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Abstract— With the rapid growth of greenhouse gas (GHG)
monitoring satellites, more and more studies focused on the issue
of inversion/optimization of carbon dioxide (CO2) fluxes using
satellite-derived XCO2 observations in recent years. A common
and critical challenge in this framework is the separation of back-
ground and anomalies from XCO2 observations, which directly
affect the performance of the CO2 fluxes’ inversion. We proposed
a novel method to accurately extract background XCO2 from
satellite observations. A series of observing system simulation
experiments (OSSEs) were performed to test the performance
of the method. We found that the bias and uncertainty of the
background concentration are below 0.01 and 0.05 ppm in the
given cases, respectively. Based on this method, we selected five
overpasses from 2014 to 2016 to demonstrate a regional-scale
flux inversion near Riyadh. The comparison with the two previous
methods shows that the posterior simulated XCO2 by the method
proposed in this article can match better with the observed
XCO2 from Orbiting Carbon Observatory-2 (OCO-2).

Index Terms— Background concentration, carbon, flux inver-
sion.

I. INTRODUCTION

CARBON dioxide (CO2) is an important anthropogenic
greenhouse gas (GHG), accounting for about 65% of

the total radiative forcing of long-lived GHGs [1]. A few
years after signing of the Paris Climate Agreement, several
countries, including the Europe Union, China, and Japan,
have announced ambitious carbon neutral plans. President
Biden signed an executive order to rejoin the Paris Climate
Agreement on his first day as the President of U.S., exhibiting
the determination of his administration to solve the climate
issue. Accurate carbon accounting is the basis for developing
scientific and effective mitigation measures. It is thus urgently
needed to upgrade current means to accurately and timely
estimate CO2 emissions/fluxes with a finer spatial and time
scale.
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Previous studies have used “bottom-up” and “top-down”
methods to quantify anthropogenic CO2 emissions [2]–[5].
The Intergovernmental Panel on Climate Change (IPCC) rec-
ommends the bottom-up approach to estimate fossil fuel (FF)
CO2 emissions at different scales [6], relying on activity data
and emission factors derived from a combination of in situ
observations and simulation studies. Such an approach pro-
vides a common criterion for different countries and regions to
compile their own CO2 emission inventories, greatly contribut-
ing to our understanding of CO2 emissions. However, evident
uncertainties in emission estimates were reported, varying
from 5% to nearly 50% [7]. For example, Liu et al. [8] noted
that the emission factor for Chinese coal is on average 40%
lower than the default value recommended by the IPCC, and
that the use of different sources of official activity data and
emission factors can result in estimated emissions varying by
up to 40% in a given year. Uncertainty in the activity data
and emission factors has been shown to range from 10% to
40% at national scales and over 150% at urban scales [5],
[9], [10]. Besides, the timely and rapid updating of emission
inventories is a formidable challenge facing the bottom-up
approach.

To supplement the bottom-up approach, the top-down
approach uses atmospheric observations and inversion tech-
niques to estimate CO2 fluxes at regional to global scales.
Ground-based or airborne observations can help constrain the
inversion of CO2 emissions [2], [11]–[13]. With advances in
satellite remote sensing technology, it has become possible
to obtain dense, XCO2 observations with a high precision on
a global scale, which has greatly facilitated the widespread
use of the top-down methods [14], [15]. The launch of
Orbiting Carbon Observatory-2 (OCO-2) provides scientists
with an opportunity to measure XCO2 from the space, and
thus determines the location of carbon sources and sinks using
atmospheric transport models. OCO-2’s sun-synchronous orbit
allows it to acquire observations at about 1:30 P.M. local
time, yielding a high signal-to-noise ratio (SNR) and good
quality. However, such an orbit also results in a long revisit
period and low data volumes. Most of the related studies
focus on forward modeling to prove that OCO-2 is capable
of detecting the signal due to urban anthropogenic carbon
emissions [16]–[18]. Quantitative estimates of anthropogenic
carbon emissions using satellite XCO2 products have become
the focus of subsequent studies [19], [20]. The key step in the
top-down approach is to build a bridge between the flux and
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the concentration using some atmospheric transport models.
The decomposition of CO2 concentration into enhancement
and background concentration is critical for flux inversion.
Previous studies demonstrate that imperfect determinations of
the CO2 background concentration will lead to large errors in
the CO2 flux inversion [5], [17], [21].

Researchers used distinct methods to derive XCO2 back-
ground. In general, these methods can be grouped into two
main categories. The first one is the statistical method [22],
[23]. Its major feature is to neglect the atmospheric trans-
port process and deduce XCO2 background based only on
XCO2 observations themselves. For example, a few studies
defined the background concentration as mean XCO2 value
over “clean area” (e.g., desert north to Los Angeles) unaffected
by anthropogenic activities [24], [25]. Ye et al. [16] used
a two-step linear regression to obtain the “background line.”
The other one is the trajectory-endpoint method [5], [26],
[27], which is often used to explain large CO2 anomalies,
such as the CO2 enhancement caused by wildfires [17], [28].
Its core idea is to use some atmospheric transport models
to identify regions that are not affected by anthropogenic
CO2 fluxes. On that basis, one can use XCO2 over those
regions as the background. For example, Hu et al. [5] released
air parcels and tracked where the parcels were located seven
days ago and determined the background concentration based
on the Carbon Tracker 3-D CO2 product. The determination of
XCO2 background exerts evident impacts on subsequent fluxes
inversions. Wu et al. [17] figured out that a mean difference of
−0.55 ppm in background concentration could lead to a 39%
higher mean observed urban signal and a larger scaling factor.
Nassar et al. [20] and Fischer et al. [29] also witnessed the
effect of biases in XCO2 background on their flux optimization
recently.

To address this issue, we introduce a new method to deter-
mine the CO2 background concentration. Based on the hypoth-
esis that the difference between the simulated and observed
CO2 concentrations satisfies a normal distribution (μ = 0),
we use a Bayesian inversion method, considering both the
trustworthiness of the prior fluxes and the observations, and
linking the two through an atmospheric transport model to
accomplish an accurate estimation of the CO2 background
concentration. To quantitatively evaluate the performance and
sensitivity of the proposed new method, we constructed an
observing system simulation experiments (OSSEs) to perform
simulation experiments by the Monte Carlo methods. On that
basis, we further applied the proposed method to CO2 flux
inversion experiments using actual OCO-2 XCO2 products
to test its validity in real cases. The remaining parts of this
work are organized as follows. In Section II, we introduce
the background XCO2 estimation method proposed in this
work in detail, as well as the models and data involved in the
subsequent experiments. In Section III, the sensitivity analysis
on the proposed method was demonstrated using OSSEs to
test the robustness. We compared the differences between
the results obtained by our method and the previous ones in
Riyadh using real OCO-2 XCO2 products. Sections IV and V
discuss the sensitivity experiments and summarize the whole
study, respectively.

II. MATERIALS AND METHODS

A. STILT Configuration
The Stochastic Time Inverted Lagrangian Trans-

port (STILT) [30] is an atmospheric transport model, which
relates the CO2 surface flux upstream of the observation
point to the XCO2 enhancements using footprint weights.
The specific principle is to simulate the backward trajectory
of the air parcels driven by the wind via releasing a large
number of air particles backward and to quantify the value
of the footprint weight by calculating the number of all
particles and the residence time of each particle within the
surface layer height (usually half of the planetary boundary
layer (PBL) height) in a region upstream [30], [31].

The STILT model is driven by the meteorological field
with a high precision output from the Weather Research and
Forecasting (WRF) model. The initial meteorological field
used by the WRF model is from Final Operational Global
Analysis (FNL) data from the National Centers for Envi-
ronmental Prediction (NCEP) (rda.ucar.edu/datasets/ds083.2).
Three nested domains with respective horizontal resolutions of
27, 9, and 3 km, and 51 vertical levels are used. The physics
configurations are the same as a study over Middle East
of Yesubabu et al. [32]: Dudhia short-wave radiation scheme,
rapid radiation transfer model long-wave radiation scheme, and
Yonsei University non-local scheme for the PBL.

A proper setting of the receptor (location of released air
particles) height and backward time in the STILT model is
critical for any actual inversion experiments. Besides, the max-
imum release height (maximum release height (MAXAGL),
in meters above ground level) setup faces a similar problem.
We conducted some pre-tests in the study area to find a
reasonable setting of the backward time and the MAXAGL.
We noted that when the backward time is longer than 70 h and
the MAXAGL is larger than 4 km, the footprint values hardly
increased any more. Therefore, we used a MAXAGL of 6 km
during the winter months and a backward time of 72 h in this
study. Column receptors are located every 100 m from the
ground to 3 km and every 500 m from 3 to 6 km, following
Wu et al.’s [17] work. At each layer below the MAXAGL,
500 air parcels are released.

B. Novel Background XCO2 Optimizer
1) Approach Summary: In this study, the background

XCO2 is defined as the regionally uniform XCO2 unaffected
by local anthropogenic emissions and natural fluxes. The
determination of the background XCO2 plays an important role
in the inversion of carbon emissions. For example, an under-
estimated background XCO2 can lead to an overestimation of
anthropogenic carbon emissions [17].

The proposed background XCO2 extraction method was
derived from a forward model and an inversion framework.
We then designed a core optimizer via formula derivation
and some specific assumptions. The forward model is used to
establish the relationship between the a priori CO2 flux and
XCO2. Its key parameter is the footprint of the XCO2 obser-
vations calculated using an atmospheric dispersion model,
namely, the Weather Research and Forecasting [33]-Stochastic
Time Inverted Lagrangian Transport [30] (WRF-STILT) model
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used in this work. The inversion framework is responsi-
ble for estimating the a posteriori CO2 flux using actual
XCO2 observations and the background XCO2. The core opti-
mizer compares the difference between the posterior simulated
XCO2 outputs from the forward model and the XCO2 obser-
vations of OCO-2 and implements the optimization process
by adjusting the background XCO2 so that the differences
between the simulated XCO2 and measured XCO2 satisfy a
normal distribution [N (0, σ 2)]. The inversion framework can
optimize the flux and thus indirectly evaluate the accuracy of
the background XCO2.

2) Forward Model: In this study, the simulated XCO2

(XCOm
2 ) is composed of the background concentration

(XCObg
2 ), the contribution of net ecosystem exchange (NEE)

(XCOnee
2 ), and the contribution of FFs (XCOff

2 ), as shown in
the following equation:

XCOm
2 = XCObg

2 + XCOnee
2 + XCOff

2 . (1)

OCO-2 provides a CO2 profile of typically 20 layers, depend-
ing on the pressure of each layer, from 0 hPa to surface
pressure [34], [35]. The pressure weighing function and the
averaging kernel (AK) represent the relationship between the
true profile and the a priori profile [17], [34], [36], [37].
We use the same pressure weighting function as for OCO-2.
The simulated CO2 profile serves as the true profile. Thus, the
simulated, OCO-2-like XCO2 (XCOm

2 ) can be obtained by (3),
following Wu et al. [17]

XCOm
2 = XCOa

2 −
n∑

i=1

xa
i hi ai +

n∑

i=1

xm
i hi ai (2)

where XCOa
2 is the OCO-2 a priori column concentration,

and xa
i is the a priori concentration of the i th layer. hi and

ai are the pressure weighting function and the average kernel
of the i th layer, respectively. xm is the simulated profile from
the WRF-STILT model. Since the pressure levels of particle
release heights we set in the model are not consistent with
those of OCO-2, the interpolation of h and a is required,
as detailed in Wu et al.’s [17] study.

The footprint derived from STILT describes the sensitivity
of observations to fluxes contributing to the CO2 concentration
at each selected receptor location and time. In addition, the
weighted column footprint (Xfootprint) that describes the sen-
sitivity of enhancements of XCO2 due to upwind surface fluxes
is introduced by Wu et al. [17], as shown in the following
equations:

Xfootprint =
n∑

i=1

footprinti × hi × ai (3)

where footprinti is the footprint of the receptor in the kth
layer. Fig. 1 shows the footprint at different altitudes and
the Xfootprint. Finally, we can obtain the simulated XCO2,
as indicated by (2) and (3).

3) Inversion Framework: The inversion framework of sur-
face CO2 fluxes consists of a footprint generating module
and a Bayesian inversion module. The Bayesian inference
is widely used to estimate CO2 fluxes using measurements
of atmospheric CO2 concentrations. First, the relationship

Fig. 1. Footprint at different fixed altitudes and the Xfootprint at 10:00 UTC
on Riyadh where the receptor is placed at 25.2◦N, 46.8◦E. The fixed receptors
were placed every 100 m within 3 km and every 500 m from 3 to 6 km. (a)–
(c) Footprints of the receptors located at 500, 1000, and 1200 m altitude,
respectively. (d) Xfootprint weighted by the pressure weighting functions and
AK. The black lines indicate roads in Saudi Arabia to represent areas of
human activity.

between the high-resolution CO2 inventory (x , an m × 1 vec-
tor) and observations of atmospheric CO2 concentrations (y,
an n × 1 vector) can be described as follows:

y = K x + � (4)

where K is an n × m Jacobian matrix, a reshaped footprint. n
and m represent the number of observations and the number
of grids of the surface fluxes, respectively. The footprint in
this work means the sensitivity of XCO2 measured at a given
location to upstream surface CO2 fluxes. � is an n × 1 vector,
representing normally distributed noise with mean �b and a
diagonal covariance matrix R(� ∼ N (�b, R)). We assume the
mean bias is zero, and the mismatch errors are uncorrelated.
The cost function [38]–[40] is defined as follows:
χ2 = (x − xa)

T S−1
a (x − xa)

+ (
y − XCO2,bg − K x

)T
S−1

ε

(
y − XCO2,bg − K x

)
(5)

where Sa(m×m) and Sε(n×n) represent the a priori flux error
covariance and the observation error covariance matrix, respec-
tively. Following Villalobos et al. [37], Lauvaux et al. [41],
Meirink et al. [42], and Turner et al. [39], the a priori error
covariance matrix can be expressed in terms of the correlation
matrix and the diagonal variances matrix, Sa = V 1/2 MV 1/2,
where V is the diagonal matrix of variances and M is the
correlation matrix. The correlation decays exponentially with
the distance. The correlation length was assumed to be 5 km
following Turner et al. [39]. We assumed no temporal error
correlation between two overpasses we used, which differs
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from Chevallier et al. [53] who used a temporal correlation
length of four weeks. Sε represents any uncertainties related
to the XCO2 observations and forward model. The uncer-
tainty of OCO-2 observations can be set according to the
“XCO2 uncertainty” variable in the OCO Lite product [34].
The estimation of transport error is detailed in Section II-D. xa

is the m×1 vector of a prior fluxes. We need to find the optimal
flux to minimize the cost function. As shown in the following
equation, we can get an optimal CO2 flux assuming that the
prior and likelihood distribution are Gaussian [38]–[40]:

x p = xa + Sp K T S−1
ε

(
y − XC O2,b g − K xa

)
. (6)

Some previous studies used the a posteriori error covariance
(Sp = (K T S−1

ε K + S−1
a )−1) to evaluate the accuracy improve-

ment [11], [43]. The AK matrix (A = Sp K T S−1
ε K ) and the

degrees of freedom (DOFs) for signal [DOFs = tr(A)] are used
to evaluate the information content [37].

4) Core Optimizer: When we consider the background
concentration as an unknown constant, we can get an opti-
mized a posteriori flux. The differences between a posteriori
simulated XCO2 and measured XCO2 should satisfy a normal
distribution with a mean of 0 [� ∼ N (0, σ )]. XCO2,bg can be
derived from the following equation:

XCO2,bg = − sum
(

y − K xa − K Sp K T S−1
ε (y − K xa)

)

sum
(
sum

(
K Sp K T S−1

ε , 2
) − 1

) (7)

where sum(X) is the sum of the 1-D matrix X and sum(Y, 2)
is the sum of each row of the 2-D matrix Y .

Note that the inversion framework and the background
optimizer are two independent processes. We first use the
optimizer to obtain an estimate of the background XCO2, and
then use this result to perform the inversion process.

C. Experimental Data

We focus on a small spatial domain (from 45◦E to 48◦E,
from 23◦N to 26◦N) to extract background XCO2 and then to
perform a Bayesian inversion. The spatial distribution of the
experimental data examples (including XCO2 observations and
fluxes) used in this work is shown in Fig. 2. Partial information
of these datasets is shown in Table I.

1) Study Area: Riyadh (latitude 25◦N, longitude 47◦E) is
the capital and the largest city of the West Asian country of
Saudi Arabia and capital of Riyadh province, with a population
of over 6 million [44]. Riyadh with tropical desert climate is
preferred in this work because of low cloud disturbances and
a low vegetation cover [16], [17], [36]. These factors help
OCO-2 to obtain better quality data. Secon, Riyadh has the
highest CO2 emissions in the Middle East [45].

2) OCO-2 XCO2 Observations: The OCO-2 was launched
on July 2, 2014, to quantify CO2 in the atmosphere from
space with sufficient accuracy [46], [47]. The OCO-2
obtains surface-reflected solar radiance at 0.76 μm oxygen
A-band, and 1.61 and 2.06 μm CO2 band to retrieve the
column-averaged dry air mole fraction of CO2 (XCO2) [35].
As a member of the A-Train constellation, OCO-2 flies on
a Sun-synchronous orbit and crosses the equator at approxi-
mately 13:30 local time every day [48].

In this study, we used OCO2_L2_Lite_FP 9r data [49] from
December 2014 to February 2016 provided by NASA’s Jet
Propulsion Laboratory. We selected available data near the
downwind direction of Riyadh. Soundings with a poor quality
(XCO2_quality_flag = 1) were filtered out. The retrieval
algorithm details the pressure weighting function, average
kernel, and optimal estimation approach [34].

3) FF CO2 Emissions: We used products from the Emis-
sions Database for Global Atmospheric Research (EDGAR) to
construct our a priori FF fluxes. Table I demonstrates the key
features of the global high-resolution gridded anthropogenic
emissions data product used in this work. EDGARv5.0 pro-
vides the emissions of the three main GHGs (CO2, CH4,
and N2O) for each sector and country [50]. For energy-
related sectors, the activity data are mainly based on the
International Energy Agency (IEA) energy balance statistics,
while the activity data of the agricultural sector mainly come
from the Food and Agriculture Organization (FAO) of the
United Nations. Since the resolution of the WRF-generated
meteorological field is 3 km × 3 km, we resampled the a
priori flux to that resolution. Besides, the gridded emission
data provided by EDGARv5.0 are annual. We need to obtain
monthly fluxes to match satellite-derived XCO2 observations.
In this work, we used monthly scaling factors, as shown in
Fig. 3, provided by the Carbon Tracker to obtain the monthly
FF fluxes using EDGARv5.0.

4) Biogenic Fluxes: The NEE data are provided by the Car-
bon Tracker [2] with a spatial resolution of 1◦ × 1◦ and a tem-
poral resolution of 3 h. The a priori NEE is simulated using
the Carnegie-Ames-Stanford Approach (CASA) [51] model
and normalized difference vegetation index (NDVI) [52] val-
ues from remotely sensed observations. Based on the global
CO2 concentration observations and the atmospheric transport
model (TM3), a Bayesian inversion is performed to optimize
the a priori NEE so that the simulated concentration values
best match the observed values. Positive values represent
carbon sources and negative values represent carbon sinks.

D. Observing System Simulation Experiments

Referring to Chevallier et al. [53], our OSSEs’ flowchart is
shown in Fig. 4. We assume that the true background XCO2 is
397 ppm. The prescribed EDGAR FF fluxes are assumed as
the true fluxes to be retrieved. The meteorological field we
obtained near Riyadh on December 29, 2014, is assumed to be
true at this stage, which means that the footprint we obtained is
unbiased. In Section IV, we further analyze the effect of errors
in the atmospheric transport model. Perturbations are added
to the true pseudo-observations of XCO2 and the true fluxes,
respectively, based on the corresponding error models. On that
basis, we used the proposed core optimizer and a standard
Bayesian inversion technique to obtain optimum estimates of
the XCO2 background concentration and the surface fluxes,
respectively. Finally, we can evaluate the performance of the
proposed method via comparison of estimates and truths of
the background XCO2 and the fluxes.

To explore the performance of the proposed method in
the presence of different observation errors and a priori flux
errors, 100 groups of experiments were designed, in which
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Fig. 2. (a) OCO-2’ overpass near Riyadh on December 29, 2014. (b) and (c) FF fluxes from EDGAR and biogenic fluxes from Carbon Tracker for December
2014, respectively.

TABLE I

PARTIAL INFORMATION OF THE DATASETS USED IN THIS STUDY

Fig. 3. Monthly scaling factors derived from “Carbon Tracker.”

observation errors vary from 0.1 to 1 ppm with a step of
0.1 ppm and a priori flux uncertainties vary from 10% to
100% with a step of 10%. For the observation errors, we have
adopted a normal distribution model. The errors are assumed
to be a random distribution with a mean of zero and a standard
deviation of some specified value. Subsequently, for each
group of experiments, 500 simulations were carried out.

To quantitatively evaluate the performance of the proposed
method, we have designed four indicators, namely, μdelta,
σdelta, η1, and η2. μdelta and σdelta denote the mean and the
standard deviation of the differences between the retrieved and
the truth XCO2 background in each group of experiments.

η1 indicates the improvement in terms of the true surface
flux. η2 indicates the improvement in terms of the error
covariance of the a priori and a posteriori. μdelta and σdelta

are used to directly describe the performance of the retrieved
XCO2 background. η1 and η2 are used to describe whether and
to what extent the surface flux was improved. Theoretically,
if the XCO2 background was determined more accurately,
inversions of the surface flux should also be more accurate.

E. Determination of Atmospheric Transport Model Errors

In OSSEs, we represent the errors in wind speed and
direction by stretching or rotating the simulated XCO2 plume
along the average wind direction, following Ye et al. [16].

There are three common ways to represent atmospheric
transport model errors when using real observation data: 1)
comparison of the results of different atmospheric transport
models [54]; 2) residuals between simulations and observa-
tions [55], [56]; and 3) quantifying the atmospheric transport
model errors by directly comparing the simulated winds with
the radiosonde data and incorporating the errors as random
velocities in the air-packet trajectories [17], [36], [56]. In this
study, we used a fractional uncertainty of 33% for the five
overpasses due to horizontal and vertical transport assessed by
Wu et al. [17]. The horizontal uncertainty was estimated by
quantifying the effect of wind errors from radiosonde observa-
tions. The vertical uncertainty is determined by the variation
in the enhancement values found for different rescaled PBL
heights. A fractional uncertainty of 74% for a single overpass
was obtained by multiplying the square root of 5 (the number
of overpasses in Wu et al.’s [17] study). The same approach
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Fig. 4. Flowchart representing the overview of the OSSEs.

was used to represent atmospheric transport errors in the
Middle East study by Yang et al. [36].

III. RESULTS

A. Observing System Simulation Experiments

Fig. 5 demonstrates the outcomes of simulation experiments
based on the OSSEs. Fig. 5(a) shows that the retrieved back-
ground XCO2 is the unbiased estimates of the true background
XCO2 regardless of observation errors of XCO2 and a priori
flux uncertainties. The maximum value of μdelta is 0.01 ppm
and occurs for a XCO2 with an observation error of 1 ppm and
a priori flux uncertainty of 60%. Overall, there is an increase
in the absolute value of μdelta as the XCO2 observation error
rises, although its magnitude is very small. In contrast, the
uncertainty in surface fluxes has a much smaller effect on
μdelta and does not show a trending pattern.

Fig. 5(b) shows the sensitivity of σdelta to the XCO2 obser-
vations’ error and the uncertainty of surface fluxes. Similar to
Fig. 5(a), σdelta is sensitive with the XCO2 observation error
and rises with an increase in the XCO2 observation error.
Meanwhile, σdelta is insensitive with the uncertainty in surface
fluxes. In general, σdelta is kept below 0.05 ppm when the
XCO2 observation error is no more than 1 ppm. Consequently,
we can conclude from the simulation experiments that the
retrieved XCO2 background using our proposed method is not
only accurate but also precise.

Fig. 5(b) and (c) shows the sensitivity of η1 and η2 to the
XCO2 observation error and uncertainties of a priori surface
fluxes. As shown in Fig. 4, both η1 and η2 take values in
the range from 0 to 1. The closer they are to 1, the higher the
degree of surface fluxes’ optimization and vice versa. Both the
figures show a similar pattern. The performances of optimized
surface fluxes decrease with increasing XCO2 observation
error and increase with the decreasing a priori flux uncertainty.
The latter outcomes may seem to be weird. This is because
both the indicators, despite their differences, include in their
definitions the uncertainty of a priori surface errors. From the
point of view of definition, both the indicators are proportions
rather than some absolute value. When the a priori error of
surface fluxes is large, the greater the role played by the

XCO2 observations in the inversion process and the easier
it is to optimize the a priori error. It is worth noting that
the uncertainty reduction is highly related to the intensity of
footprint. As shown in Fig. 1, footprints exhibit an evidently
spatial heterogeneity, which is mainly driven by wind fields.
Hence, the uncertainty reduction actually also has an evidently
spatial heterogeneity. In Fig. 5(c) and (d), η1 and η2 are the
average of all uncertainty reductions in the whole study area.
The grids with small footprint values pull down η1 and η2.

B. Experiments Based on Real Observations

As in the previous experiments with OSSEs, our study area
is still the small spatial domain (from 45◦E to 48◦E, from
23◦N to 26◦N) adjacent to Riyadh. We selected five overpasses
between 2014 and 2016.

1) Comparison of the Three Methods: First, we need to
test how the proposed method performs against other existing
methods. Silva and Arellano [23] chose a 4◦ × 4◦ spa-
tial region centered in a city and subtracted the standard
deviation from the mean as the background concentration.
Wu et al. [17] used the trajectory-endpoint method to estimate
the XCO2 background. As introduced in Section I, the existing
background XCO2 extraction methods can be categorized as
the statistical method and the trajectory-endpoint method. The
above-mentioned two methods are the representatives of these
two categories, respectively. For comparison, we labeled the
method used by Wu et al. [17] as M1 and the method used
by Silva and Arellano [23] as M2. The proposed method in
this work is abbreviated as M3.

We have selected XCO2 products of OCO-2 on five dif-
ferent dates for our experiments. The outcomes of three
different methods are demonstrated in Fig. 6. Overall, the
XCO2 backgrounds from the three different methods exhibit
similar trends, but differ in values. M2 yielded the lowest
XCO2 background in all five cases. The difference between
the maximum and minimum XCO2 backgrounds obtained by
three methods in five cases varies from 0.7 to 3 ppm, which is
not a trivial value. The determination of the XCO2 background
directly affects the magnitude of XCO2 enhancement which
is the critical constraint for subsequent inversions of surface
fluxes. Therefore, we can use three different XCO2 background
to implement the subsequent surface flux inversion, and then
use the three a posteriori fluxes to simulate the XCO2 obser-
vations, and finally compare these simulated XCO2 with the
observed XCO2 from OCO-2 to evaluate the XCO2 back-
ground extracted by different methods.

The a posteriori fluxes and simulated XCO2 can be obtained
using the three methods described above, the distribution of the
difference between simulated XCO2 using optimized surface
fluxes, and the observed XCO2 is shown in Fig. 7.

Except for the case on December 16, 2015, the M3 method
provides a better match between the simulated and observed
concentrations, not only with a normal distribution of μ equal
to 0 but also with a smaller σ .

2) Spatial Distribution of Simulated and Observed XCO2:
Using the case of December 16, 2015 as an example,
Fig. 8 shows the spatial distribution of the simulated and
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Fig. 5. Four indicators for evaluating the performance of the method. The horizontal axis represents the observation error of the satellite and the vertical
axis represents the range of perturbation added to the true surface flux. Delta represents the difference between the calculated background concentration and
the truth. (a) and (b) Mean value of delta and standard deviation of delta, respectively. (c) Degree of improvement of the posterior flux compared with the
truth. (d) Degree of improvement of the posterior flux error covariance compared with the a priori flux error covariance.

observed XCO2. Due to the lack of valid observations, we only
selected areas with latitudes greater than 23.5◦N to present the
results. There are two simulated XCO2. One is the simulated
XCO2 based on a priori surface fluxes and the other is that
based on a posteriori surface fluxes. The a posteriori surface
fluxes were optimized using XCO2 background extracted by
M3. Fig. 8 shows that there are significant XCO2 enhance-
ments near 24.25◦N according to XCO2 observations of
OCO-2. The simulated XCO2 based on a priori surface fluxes
does not reproduce well in terms of the intensity of the
XCO2 enhancement. In contrast, the simulated XCO2 using
a posteriori CO2 fluxes shows a better agreement with the
observed XCO2, especially in the range from about 23.6◦N
to 24.5◦N. The typical difference between the simulated and
observed XCO2 decreased from over 2 to 1.13 ppm after

the optimization of surface CO2 fluxes, implying a good
performance of the extracted XCO2 background.

3) Posterior CO2 Flux and DOF: AK is the derivative
function of the a posteriori flux about the a priori flux. Higher
AK values are usually found where footprint values are high or
where the a priori flux uncertainty is high, which means that
less information is acquired from the a priori CO2 fluxes [17].
The DOFs are the trace of AK matrix [34], which can be used
to describe the amount of independent information provided by
observations. Table II shows the differences between the a pri-
ori and a posteriori surface fluxes and the corresponding DOFs
in each experiment. Table II shows that after optimization, the
a posteriori surface fluxes vary in magnitude, ranging from
−22% to 49%. The magnitude of the change is influenced not
only by the confidence of observation (including uncertainty
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Fig. 6. Background XCO2 calculated by three methods from 2014 to 2016
(the abscissa represents the date for the satellite to pass through Riyadh,
and the gray rectangle, red circle, and blue triangle represent the background
XCO2 calculated by M1–M3, respectively).

in atmospheric transport models and uncertainty in OCO-2
soundings) but also by the distribution of the footprint.

IV. DISCUSSION

A. Atmospheric Transport Model Errors

In the OSSEs, we analyzed the effect of different flux errors
and observation errors on the method proposed in this study.
However, these experiments are based on the assumption that
the atmospheric transport model yields no errors. However,
the error derived from the atmospheric transport model is
not ignorable in many cases. Therefore, we focus on how
uncertainties of outputs from the atmospheric transport model
affect the extraction of XCO2 background and the inversion
of CO2 fluxes in the section. In the specific experiment,
the uncertainty of the CO2 flux was set to 40% and the
uncertainty of the XCO2 observations was considered to be
1 ppm. We analyzed the effect of different wind speed and
wind direction errors on the performances of the proposed
method. The results are shown in Table III. Here, μ and σ are
the mean and standard deviation of the difference between the
calculated XCO2 background and the true XCO2 background,
respectively. More observations of wind can help reduce the
uncertainty of atmospheric transport. For example, the data
assimilation system has been shown to be used to reduce
errors in atmospheric transport in data-rich areas (e.g., Los
Angeles) [57]. In addition to the systematic wind error, there
will be positive/negative wind bias in some areas [16]. The
X-STILT model proposed by Wu et al. [17] has the ability to
correct for wind bias by rotating the model trajectory.

B. Limitation of OCO-2 Observations

Observations with high spatial coverage help obtain more
accurate posterior fluxes for urban-scale study areas. For
example, Ye et al. [16] showed that multi-track observa-
tions can effectively reduce the impact of non-systematic
atmospheric transport errors on the inversion results. In this

TABLE III

EFFECT OF WIND ERROR ON METHOD ACCURACY

study, an attempt was made to optimize a priori flux using
OCO-2 observations, where the larger footprints (>10−2)
are usually distributed upwind of the satellite nadir point.
However, for the city where there is a large deviation in the
CO2 flux it may not be corrected due to the distance from the
satellite transit location or downwind. On the city scale, if the
problem of a low spatial coverage can be solved, the ability
to constrain fluxes by the top-down methods using spaceborne
XCO2 observations will be greatly improved.

Satellites operating in Sun-synchronous and low-earth polar
orbits like OCO-2 provide a near-global coverage. However,
they have a long revisit time, large gaps between adjacent
tracks, and always look at the landscape at the same local
time. Hence, they would eventually miss the daily changes
in ecosystems. We have to rely on the time of day scaling
factors to obtain the daily variation in CO2 fluxes. The
snapshot area map model of OCO-3 could be a useful tool
for studying the urban carbon cycle [58]. Cities can be
observed more frequently, providing an effective means of
estimating urban carbon emissions. Whereas non-noon transit
satellites are often constrained by the large solar zenith angle
to obtain observations of solar radiance with a high SNR.
Moreover, interferences from clouds and aerosols make the
majority of passive remote sensing of XCO2 invalid. In the
forthcoming years, more satellites will be launched to measure
GHGs from the space, such as China’s Atmospheric Environ-
ment Monitoring Satellite (AEMS) [59] and GHG Satellites
(GHGSS) [60], [61]. Those active remote sensing satellites
can solve the above-mentioned shortcomings of passive remote
sensing satellites.

The negative enhancement shown in Fig. 8 is also seen
in similar previous studies [17], [36]. That may be due to
biogenic fluxes, or it may be a measurement error of OCO-2.
Although some biases due to systematic error have been
removed in the bias-corrected data product. Wunch et al. [62]
pointed out that residual biases that may be associated with
surface properties and aerosol scattering still exist on a local
scale, by comparison with the Total Carbon Column Observing
Network (TCCON) XCO2 measurements. Ye et al. noted
that the effect of these biases on XCO2 enhancement would
be eliminated with the subtraction of the biased background
XCO2 in a small spatial domain (200–300 km) [16]. It is
often the case that the tails surrounding the urban plume
do not exactly match. Some studies selected representative
(XCO2 peaks) aggregated latitudinal band observations to
reduce the effects of OCO-2 measurement errors and hori-
zontal wind errors [16], [17]. Past versions (V8 and earlier)
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Fig. 7. Distribution of the difference between the simulated and observed XCO2 in ppm. (Gray, red, and blue histograms represent the results obtained by
the M1–M3 methods, respectively. The means and standard deviations of difference are shown in the legend).

TABLE II

RESULTS OF REAL CASES FOR FIVE TRACKS OVER RIYADH. BACKGROUND XCO2 IS CALCULATED BY M3. PRIOR AND POSTERIOR REPRESENT THE

AVERAGED PRIOR FLUXES AND POSTERIOR FLUX IN THE STUDY AREA (23◦N–26◦N, 45◦E–48◦E), RESPECTIVELY. CHANGE REPRESENTS THE

CHANGE IN a Posteriori WHOLE-CITY EMISSIONS COMPARED WITH a Priori WHOLE-CITY EMISSIONS. DOF REPRESENTS THE DOF

Fig. 8. Demonstration of the relationship between XCO2 and latitude. The
gray squares represent OCO-2’ observations, the green solid line represents
the calculated background concentration, the black line represents the average
of the observations per 0.1 degrees of latitude, the red line represents the
simulated XCO2 obtained by prior surface flux averaged per 0.1 degrees of
latitude, and the blue line represents the average per 0.1 degrees obtained with
the a posteriori flux.

of OCO-2 product could filter out the poorer quality data
by warning levels, and after version 9 we can filter by
“XCO2_quality_flag.” Poor quality observations are not rec-
ommended for use in flux inversions, which is risky. In addi-

tion, the OCO-2 team is constantly updating the versions of the
data, and observations from different versions may have large
differences [17], and we recommend using the latest version
for CO2 flux inversion. In this article, it is assumed that the
results derived from OCO-2 observations are unbiased.

C. Configuration of Prior Error Covariance

The definition of a priori emission error is still subjective,
and there is currently no strict quantification of emission error
with a high resolution. A more accurate error covariance
configuration facilitates a better flux estimation. However,
it is very difficult to evaluate errors in a priori emission
inventories [63], especially for pixel-level inversions, which
usually requires comparing high-resolution accurate emission
inventories (e.g., Vulcan [64] and Hestia [65] inventory). Fur-
thermore, in pixel-level inversions, solving the spatial pattern
requires additional information related to the spatial pattern
of the a priori emission error. Basu et al. [66] proposed three
ways to determine the correlation of spatial errors, which
are exponential, regional, and a hybrid of the first two.
Turner et al. [39] determined the a priori error covariance
using the “hybrid” method and showed that a pixel-level
inversion with multiple observation sites reasonably located in
cities can effectively reduce the uncertainty of urban emissions
and improve the spatial resolution of a priori emission inven-
tories. Lauvaux et al. [67] also used the “hybrid” method and
tested the impact on the a posteriori emissions using varying
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correlation length. In contrast to the pixel-level inversion used
in this article, some studies sacrifice the ability to capture
spatial variability to obtain a whole-city scaling factor [16],
[36]. This approach does not require consideration of spatial
correlation.

D. Complexity of the Ecosystem

Riyadh with low vegetation was selected as the study area
to reduce the influence of the uncertainty of biogenic fluxes
on the experiment. More cities will be included in the future
study. However, for cities with complex carbon sinks, it seems
crucial to calculate accurate biogenic fluxes through excellent
plant models (like Vegetation Photosynthesis and Respiration
Model (VPRM) [68], [69] or Solar-Induced Fluorescence for
Modeling Urban biogenic Fluxes (SMUrF) [70]) is necessary.

V. SUMMARY AND CONCLUSION

The estimation of regional XCO2 background is the key to
the CO2 flux inversion with a good performance. In this article,
a new method is proposed to calculate the XCO2 background
required by a standard and frequently used Bayesian inversion
framework, considering the observation error of XCO2 prod-
ucts and the error of the a priori flux. Moreover, the required
calculation time is affordable. Hundred sets of sensitivity
experiments (500 times for each group) show that: the bias
and uncertainty of the XCO2 background are below 0.01 and
0.05 ppm, respectively. When the observation error is 0.1 ppm
and the flux uncertainty is 100%, the improvement of the a
posteriori flux is up to 36.3% compared with the true flux,
and the uncertainty reduction of the a posteriori flux is up to
36.9% compared with the a priori flux.

When there are errors in the atmospheric transport model,
the flux optimization will become conservative due to the
larger covariance of observation errors. To reduce the uncer-
tainty derived from the atmospheric transport model, addi-
tional observations of the wind need to be considered.

Based on this method, we selected five overpasses
from 2014 to 2016 to demonstrate a city-scale flux inversion
near Riyadh. The comparison with the two previous methods
shows that the posterior simulated XCO2 by the method
proposed in this work can match better with the observed
XCO2 from OCO-2. In addition, we found that EDGAR
inventory overall overestimates Riyadh’s emissions except
December 16, 2015.
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