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A B S T R A C T   

The matched filter (MF) method is widely used for hyperspectral imaging spectrometers to detect and quantify 
methane point sources due to its high computational efficiency. However, it would result in an unavoidable 
underestimation, especially for large concentration enhancements. The lognormal matched filter (LMF) has 
provided a unique and not limited to weak methane plumes theory through lognormal background radiances 
modeling, but validations on simulated experiments and applications to real data remain to be explored. 
Moreover, the covariance contamination caused by the enhanced pixels and the surface heterogeneity have 
detrimental effects on the detection methods for real data application. In this study, we propose the iterative 
lognormal matched filter (ILMF) method to address these challenges. We evaluate the performance of the ILMF 
with two ideal simulations and the end-to-end simulation. The results of random simulated enhancement re
trievals show that the retrieved enhancement by the ILMF method agrees well with the true enhancement, with 
an R2 of 0.984 and a small root-mean-square error (RMSE) of 55.856 ppb. The ILMF method reduce the RMSE of 
retrieved enhancement by 80% compared with the MF method. The results of end-to-end simulations show the 
underestimation of MF method at different sites regarding the emission rate, as well as the improvement of the 
ILMF method. Further, we apply the ILMF method to detect and quantify point sources in some methane hotspot 
regions. Our study reports the underestimation in traditional MF method and provides an unbiased and robust 
method for quantifying methane emissions.   

1. Introduction 

Methane is a potent greenhouse gas that is responsible for approxi
mately 30% of global warming since pre-industrial times (Naik et al., 
2021), second only to carbon dioxide (CO2) in driving climate change 
(Masson-Delmotte et al., 2021). Methane has a global warming potential 
(GWP) that is >80 times greater than CO2 over 20-year period (EPA, 
2022). The fossil fuel industry, including oil and gas (O&G) extraction 
and coal mining, accounts for approximately 35% of global anthropo
genic methane emissions (UNEP and CCAC, 2021). Therefore, reducing 
methane emissions from industrial activities is considered to be the 
fastest and the most impactful solution for addressing near-term climate 

warming. However, detecting a large number of emission point sources 
(Duren et al., 2019) with relatively small sizes worldwide is particularly 
challenging since they often occur unexpectedly (Cusworth et al., 
2021a), such as in pipeline leaks, facility failures. Furthermore, the 
quantity, duration, and frequency of leaks may vary considerably across 
regions and time periods (Irakulis-Loitxate et al., 2021, 2022). Regular 
monitoring of these methane emitters with high spatial resolution and 
high frequency is therefore essential and a prerequisite for cutting 
methane emissions (Chen et al., 2022). 

Methane has fundamental vibrational absorptions in the shortwave 
infrared (SWIR) spectrum. Satellites that measure reflected solar radi
ation in the SWIR can detect subtle signal variations due to the methane 
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absorption. This provides a great capability for monitoring point sources 
globally and individually (Frankenberg et al., 2005a; Jacob et al., 2016, 
2022). However, given the mutual constraints of the high spatial reso
lution and the high frequency, satellites with different designs are 
required to collaborate to investigate methane point sources on a global 
scale (see Fig. 1) (Varon et al., 2021). Global mappers such as SCI
MACHY (30 × 60 km2 pixels) and TROPOMI (5.5 × 7 km2 pixels) can 
provide daily methane column concentration (XCH4). However, their 
limited spatial resolution means that we are unable to finely localize 
individual emission sources and distinguish their respective contribu
tions (Sadavarte et al., 2021). Complementary to global mappers, some 
hyperspectral and multispectral missions are gradually demonstrating 
their capabilities to map plumes and to quantify emission rates for in
dividual methane point sources. Imaging spectrometers measuring ra
diation at approximately 10 nm spectral sampling with 30 m spatial 
sampling, such as EO-1 Hyperion (Thompson et al., 2016), ZY1 AHSI 
(Irakulis-Loitxate et al., 2021), PRISMA (Guanter et al., 2021) and GF5 
AHSI (Irakulis-Loitxate et al., 2021), have shown great potential for 
methane mapping in O&G producing and coal mining regions. Recent 
studies have demonstrated the capability of multispectral satellites, 
including Landsat 5/8 (Irakulis-Loitxate et al., 2022), Sentinel 2 (Varon 
et al., 2021; Gorroño et al., 2022; Ehret et al., 2022) and WorldView 3 
(Sánchez-Garca et al., 2022), to detect methane plumes with a high 
spatial resolution and a frequent revisit. The commercial GHGSat 
constellation (Jervis et al., 2021; Ramier et al., 2020) is specifically 
designed to detect methane point sources with a high spatial resolution 
(25 m or 50 m) and a high precision (∼ 1%–15%) for targeting ∼ 10 ×

10 km2 domains. The collaboration of satellites with different designs 
will be an important means of detecting methane point sources on a 
global scale. TROPOMI-like satellites can help highlight regions that 
have large methane leaks, while PRISMA-like satellites with a high 
spatial resolution can precisely locate and quantify methane point 
sources in target areas. Regular monitoring is particularly effective for 
detecting strong point source emissions and has great potential to help 
environmental authorities to regulate unknown methane emitters. 

Physically-based methods, including WFM-DOAS (Buchwitz and 

Burrows, 2004) and IMAP-DOAS (Frankenberg et al., 2005b; Thorpe 
et al., 2014), retrieve some parameters relying on explicit radiative 
transfer modeling. Alternatively, data-driven methods improve the 
computational efficiency by simplifying complicated atmospheric radi
ative transfer models, such as the band ratio (BR) method (Roberts et al., 
2010; Bradley et al., 2011; Scafutto et al., 2021), and the matched filter 
(MF) method (Thompson et al., 2016; Dennison et al., 2013; Thorpe 
et al., 2013). Among them, the MF method has been widely used (Thorpe 
et al., 2016; Frankenberg et al., 2016; Cusworth et al., 2021b; Foote 
et al., 2020; Cusworth et al., 2020, 2021a; Zhang et al., 2023) in 
airborne and spaceborne experiments as it enables methane column 
concentration enhancement (ΔXCH4) mapping and further estimating 
emission rates (in kg/h), based on the Taylor’s expansion simplification 
and a linear least squares fit. However, the MF method is limited by its 
simplified linear signal model and may not fully capture the physical 
processes involved in gas detection, particularly in the case of strong 

Fig. 1. Description of satellites that can be used for methane detection, including operational time, revisit period, spectral resolution, and spatial resolution.  

Fig. 2. Satellite observation schematic of methane point sources detection.  
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plumes (Schaum, 2021). Due to the linear approximation, only the 
concentration of weak plumes can be derived accurately, while stronger 
plumes tend to be underestimated. To address this fundamental prob
lem, the lognormal matched filter (LMF) method has been proposed, 
which provides a theoretically optimal solution for all gas concentra
tions, including strong plumes. 

Moreover, the unit methane absorption coefficient (k) is a key 
parameter for both MF and LMF methods, directly affecting the con
centration enhancement retrieval. It represents the total optical depth 
increment resulting from per unit concentration methane, which is 
affected by the solar zenith angle (SZA), the view zenith angle (VZA), the 
sensor height (H1), and the surface elevation (H2) at the time of 
observation (see Fig. 2). To retrieve the concentration enhancement 
from a given satellite, it is necessary to determine the convolved k that 
corresponds to its spectral resolution and sampling. 

This paper is organized as follows. In Sect. 2, the MF and the LMF 
theories and the procedure for calculating k considering two-way ab
sorption are described in detail. Then we propose an Iterative Lognormal 
Matched Filter (ILMF) method to overcome the covariance contamina
tion caused by the enhanced pixels. Sect. 3 demonstrates the advantages 
of ILMF over LMF and MF by simulation results and presents some ex
amples of methane plumes retrieved by the ILMF method using real 
PRISMA data. This work is motivated by PRISMA-like hyperspectral 
satellites but is generally applicable to Sentinel 2-like multispectral 
satellites. 

2. Materials and methods 

2.1. ΔXCH4 retrieval methods 

Methane, water vapor and carbon dioxide have fundamental vibra
tional absorptions in the SWIR spectrum. Fig. 3 shows modeled atmo
spheric optical depths for these three major greenhouse gases. These 
atmospheric optical depths were generated using the HAPI tool based on 
the HITRAN database (Kochanov et al., 2016). The strongest methane 
absorptions peak at approximate wavelengths of 1650 and 2300 nm. 
Methane absorption features overlap with the other two interference 
gases. By comparisons, the methane absorption feature near 2300 nm is 

less susceptible to the interference from other gases and is therefore 
often chosen as the retrieval window. 

The basic principle of the ΔXCH4 retrieval methods is to use the 
difference between radiances to calculate the concentration enhance
ment compared to the methane-free pixels. The clear sky top of atmo
sphere upwelling radiance is composed of radiances emitted by the 
surface, radiances reflected by the surface, and radiances emitted by the 
atmosphere (Saunders et al., 1999). Fig. 4 shows the direct reflected 
solar radiance from the surface (DRCT RFLT RAD), the total radiance 
(TOTAL RAD) and the ratio between them. The simulated solar radiance 
pass through all layers in both the downwelling and the upwelling di
rection. In this study, the reflected radiance accounts for >95% of the 
total radiance for the methane retrieval window (∼2110–2450 nm). 
Thus, the calculation of the unit methane absorption coefficient must 
take into account the two-way absorption. These radiances are obtained 
from the 1976 U.S. Standard Atmosphere (Anderson et al., 1986), sur
face temperature of 300 K, and surface albedo of 0.5. Several detection 
methods will be described below. 

2.1.1. Matched filter 
It is assumed that the SWIR radiance spectrum received by satellite 

sensors satisfies a normal distribution (x ∼ N (xr,Σ)) for methane-free 
pixels over homogeneous surfaces. Assuming that the methane con
centration enhancement is only present in a very small number of pixels, 
the reference spectrum xr and the covariance matrix Σ can be estimated 
with the background pixels spectrum (xb). 

xr ≈
1
N

∑N

n=1
xb(n),

Σ ≈
1
N

∑N

n=1
[xb(n) − xr ][xb(n) − xr ]

T

(1)  

where N is the number of background pixels. To avoid the effect of the 
strip noise, xr and Σ are calculated on a per-column basis. 

According to Beer Lambert’s law, the spectrum which is affected by 
the methane concentration enhancement can be modeled as, 

xm = xre− kΔc, (2)  

where xr is the reference spectrum which is not affected by the methane 
concentration enhancement and Δc is the methane concentration en
hancements. And the detailed calculation procedure to deduce k is 
described in Sect. 2.3. The estimation of Δc is typically based on fitting 
the observed spectrum (xo) and modeled spectrum (xm) in the SWIR 

Fig. 3. Vertical optical depths of water vapor, carbon dioxide and methane in 
the 1600–2500 nm spectral range. Absorption line parameters are based on the 
HITRAN database. The values are for the 1976 U.S. Standard Atmosphere 
(Anderson et al., 1986) with a solar zenith angle (SZA) of 0◦ and viewing zenith 
angle (VZA) of 0◦. Lighter colors are original optical depths sampled at 
0.1 cm− 1 spectral resolution, and darker colors are optical depths smoothed by 
the Savitzsky-Golay filter. 

Fig. 4. Comparision between the direct reflected solar radiance (DRCT RFLT 
RAD) and the total radiance (TOTAL RAD). These radiances are simulated by 
the MODTRAN model. The solid black line is the ratio between them. 
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spectral region. Modeled spectrum can be linearized according to the 
first-order Taylor expansion, 

xm = xr(1 − kΔc). (3) 

Further, the goal is to minimize the residuals between the observed 
and modeled spectrums, as shown in Eq. (4). 

∑I

i=1

(
xi

o − xi
m

)2
≡‖ RES‖2→min, (4)  

where I is the number of bands in the retrieval window (2110–2450 nm). 
Its least squares solution can be expressed as 

Δc =
(
(xrk)T Σ− 1(xrk)

)− 1
(xrk)T Σ− 1(xr − xt)

=
(xrk)T Σ− 1(xr − xt)

(xrk)T Σ− 1(xrk)

(5) 

It is worth noting that the linearization in Eq. (1) only applies to the 
case of weak methane plume with small Δc (Schaum, 2021). The 
retrieval result will be unfaithful for large Δc. Although such lineariza
tion does not affect the detection of methane point sources, it does affect 
the subsequent quantification of emission rates. 

2.1.2. Lognormal matched filter 
As a means of addressing the shortcomings associated with the MF 

method, it has been proposed that the lognormal distribution can be 
utilized as an alternative spectral background model (Schaum, 2021). 
The normal distribution adapted to negative unphysical electro-optic 
signals while the logarithmic distribution supports only positive ones. 
Taking logarithms for both sides of Eq. (1), 

ln(xm) = ln(xr) − kΔc (6) 

Since the background is assumed to be log-normally distributed, the 
residuals (V = ln(xm) − ln(xo)) are considered to satisfy a normal dis
tribution. The fundamental result of LMF detector can be expressed as, 

Δc =
kT Σ− 1(ln(xr) − ln(xt) )

kT Σ− 1k
, (7)  

where 

ln(xr) ≈
1
N

∑N

n=1
ln(xb(n) ),

Σ ≈
1
N

∑N

n=1
[ln(xb(n) ) − xr ][ln(xb(n) ) − xr ]

T
.

(8) 

The unit methane absorption coefficient used in the LMF method is 
consistent with that in the MF method and will be described in detail in 
the Sec. 2.2. 

2.1.3. Iterative lognormal matched filter 
The estimation of the mean and the covariance is crucial for both MF 

and LMF, as shown in Eq. (1) and Eq. (8), respectively. These values are 
not reliable for images with a large proportion of enhanced pixels. In 
particular, the “contaminated” covariance matrix can introduce large 
errors into the results. 

Iterative matched filter (Kim et al., 2016; Foote et al., 2020) allows 
updating the mean and the covariance matrix, which can effectively 
reduce the contamination of background statistics by target signals. In 
this study, we proposed the iterative lognormal matched filter (ILMF) 
method to update the mean and the covariance by eliminating the pixels 
initially judged enhanced. The specific flow chart using ILMF for this 
study is shown in Fig. 5. The outliers are considered statistically sig
nificant ΔXCH4 which exceed twice the level of noise (2σ threshold, p <
0.05). The iterations terminate when there are no outliers in the ΔXCH4 
or when the number of iterations exceeds five. Subsequently, we update 
the mean and the covariance for the final time. 

2.2. Effect of surface type 

The presence of multiple surface types within a scene can introduce a 
variability in the reflected signal, leading to errors in the estimation of 
the methane plume. This is because different surface types have different 
reflectance properties in the SWIR region, which can affect the accuracy 
of the mean and the covariance estimation. A bright and homogeneous 
surface is ideal for accurate estimation of the methane plume, as it fa
cilitates a better estimation of the mean and the covariance. In contrast, 
a heterogeneous and relatively dark surface is unfavorable for methane 
plume detection. Even though the negative effect due to heterogeneity 
can theoretically be eliminated as much as possible by clustering the 
surface types, the actual clustering effect in complex regions needs 
further study. How to choose a clustering method is beyond the scope of 
this study. Our results also revealed that certain surface types possess 
distinct absorption characteristics, such as those found in vegetable 
trellises, painted soccer fields, and photovoltaic panels (see Supple
ment), which result in erroneous classification as enhanced pixels by the 
MF or ILMF. These false positives necessitate additional visual inter
pretation, taking into account wind direction and high-resolution optical 
images to accurately distinguish them. 

Initialize
albedo factor

Initialize
mean and covariance

Calculate
XCH 4 Preliminarily

Recalculate
mean and covariance
over enhanced area

Outlier value judgment

Recalculate
XCH 4

End

Fig. 5. Flow chart of ILMF method.  
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In addition, sensor noise comes from two main components: the 
photonic noise and the constant noise (Ayasse et al., 2019). Thus, the 
measured signal-to-noise ratio (SNR) decreases for darker surfaces. 
Further, the retrieval precision decreases for low radiances due to large 
solar zenith angles or dark surfaces. 

For a retrieval over a single pixel, a reference spectrum for that pixel 
is required. Retrieval errors may occur when an albedo-influenced 
reference spectrum is used, if the overall brightness of a pixel deviates 
from the average brightness in the across-track direction. This effect can 
be compensated by overall scaling of the spectrum with an albedo factor 
(Foote et al., 2020) For example, darker pixels correspond to albedo 
factors >1. We applied this idea in the ILMF method. 

2.3. Calculation procedure of unit methane absorption coefficient 

The unit methane absorption coefficient is determined by both the 
optical path length and the methane absorption cross section. In other 
words, it represents the total optical depth variation for a unit of 
methane concentration. Unlike the airborne experiments (Frankenberg 
et al., 2016; Thompson et al., 2015), the sensor is higher for spaceborne 
observations. For a given satellite (e.g., PRISMA), it is necessary to 
determine the convolved k that corresponds to its spectral features 
(resolution and sampling). Specifically, the procedure for calculating k is 
as follows. The corresponding flow chart is shown in Fig. 6.  

1) Given five atmospheric profiles (including temperature, pressure, 
and volume mixing ratio of various gases), the only difference be
tween them is the methane concentration. The column concentra
tions of methane are noted as c1 to c5 in an ascending order. 

2) The high resolution radiances corresponding to the different con
centrations was calculated by the radiative transfer model (RTM).  

3) The Gaussian spectral response function is used to generate 
convolved radiances for a given satellite, which is determined by the 
central wavelength and full width at half maxima (FWHM). The 
convolved radiances corresponding to c1 to c5 are noted as r1 to r5. 

4) Regarding c1 as the background column concentration, the differ
ence between c2 to c5 and c1 is noted as Δc2 to Δc5. The transmittance 
due to methane absorption corresponding to Δc2 to Δc5 can be ob
tained from the convolved radiances as TΔci

= ri
r1

. 
5) Further, the optical depth increment due to the methane enhance

ment can be expressed as odci = − ln
(

TΔci

)
.  

6) Lastly, the coordinates of the four points (Δci, odΔci ) were used for the 
least squares fitting. The obtained slope is the unit methane ab
sorption coefficient. 

It is noteworthy that there are several underlying assumptions in this 
section about atmospheric profiles that affect the slope of the fitting. 

2.4. Three image-level simulations 

In this study, we employ three sets of simulated hyperspectral data as 

input for the retrieval of methane concentration enhancement. Table 1 
provides an overview of the three sets of simulations, including the 
methods used for ΔXCH4 maps generation, surface variations, and in
strument precision (σ). The total concentration, comprising of the 
generated ΔXCH4 and the background concentration, can be used as 
input to the radiative transfer model (RTM) to generate the radiance or 
transmittance. Considering the global average column concentration of 
methane in recent years and the increasing trend (Jacob et al., 2022; 
Zhang et al., 2022; Yang et al., 2023), the background concentration is 
assumed to be 1900 ppb in this study. In the Simulation 1, 2% of the 
pixels are randomly selected and enhanced with uniformly random 
value from 1 to 1500 ppb. In the Simulation 2–3, concentration 
enhancement images are generated by the WRF-LES model. Simulation 3 
contains the surface variation and the noise of the real PRISMA data, 
also known as end-to-end simulation. Similar to Cusworth et al. (2019) 
and Guanter et al. (2021), the effect of the simulated plume is added to 
the real PRISMA TOA images without plumes for generating pseudo- 
observations. The high-resolution transmittance spectra generated by 
WRF-LES are convolved by the spectral response function of PRISMA 
and then are multiplied with the real PRISMA TOA spectrum. Compared 
with the simulation 2, the end-to-end simulation is more challenging for 
the plume retrieval, due to a large instrument noise, heterogeneous 
surfaces, instrumental artifacts, and potential false positives. Plumes 
caused by small emission rates may be invisible in end-to-end simula
tions, as small concentration enhancements can be drowned out by 
noise. Additionally, end-to-end simulations can be used to investigate 
the performance of retrieval methods in different places of the world. 
We selected four subsets of the real PRISMA TOA images from four lo
cations in Algeria, Turkmenistan, China, and the United States, as shown 
in Fig. 7. The selection of these four locations is driven by their distinct 
surface characteristics in terms of heterogeneity and brightness, as well 
as their prominent role in the energy industry (Varon et al., 2021; 
Guanter et al., 2021), which leads to the release of significant amounts of 
methane into the atmosphere. We chose these four images with similar 
SZA in order to minimize the effect of the SZA on the results. Fig. 7 
shows the true-colour composite images of the four selected subsets 
(100× 100 pixel) containing the plume and the TOA radiance at 2300 
nm. 

The concentration enhancement can be retrieved using noised 
pseudo-observations to investigate the performance of different ΔXCH4 

Fig. 6. Flow chart of unit methane absorption coefficient calculation procedure.  

Table 1 
Description of the three image-level simulations.   

ΔXCH4 generation Surface variation Instruments 
precision 

Simulation 
1 

Uniformly random 
value 

Not considered 1% 

Simulation 
2 

WRF-LES Not considered 1% 

Simulation 
3 

WRF-LES True data from 
PRISMA 

True data from 
PRISMA  
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retrieval methods (LMF, MF and ILMF). In combination with the method 
for quantifying point source emission rates, the data from Simulation 2 
and Simulation 3 can also be utilized to analyze the effect of the ΔXCH4 
retrieval methods on the estimated emission rates. 

2.5. WRF-LES 

WRF-LES has the capability to simulate realistic three-dimensional 
volume mixing ratio enhancements for a given emission rate and 
meteorological conditions. Two-dimensional methane plumes can be 
obtained by integrating over the column. The LES model setup for the 
simulation of plumes is described in Varon et al. (2018). Fig. 8 shows an 
example of a methane plume for an emission rate of 2000 kg/h and a 10 

m wind speed of 3 m/s. The emission rate is set by scaling the total 
methane mass in the plume. 

2.6. LBLRTM 

The reflected solar radiances were generated by Line-By-Line Radi
ative Transfer Model (LBLRTM) (Clough et al., 2005; Dennison et al., 
2013; Liu et al., 2023). The line parameter database was built from 
HITRAN 2012. And the LBLRTM solar inputs were generated with the 
“extract solar” function available on the AER RT website and the Kurucz 
solar source function. The 1976 U.S. Standard Atmosphere (including 
temperature, pressure, and other gas concentrations) (Anderson et al., 
1986) was used for all cases except for the methane concentration. The 
air column was divided into 42 layers and the two-way transmittance 
was assumed for all layers. 

These parameters such as SZA, VZA, etc. can be used as inputs for the 
radiative transfer model to simulate reflected solar radiance. Further, 
the radiances can be used to retrieve concentration enhancements using 
MF or LMF. 

2.7. Methods for quantifying point source emission rates from 
observations of column plumes 

The characteristics of methane plumes depend mainly on the in
tensity of the emission source and the wind speed. Methods commonly 
used to quantify point source rates from plumes include the integrated 
mass enhancement(IME) (Frankenberg et al., 2016; Thompson et al., 
2016), the Gaussian plume inversion method (Zheng et al., 2020; Shi 
et al., 2023), the cross-sectional flux method (Conley et al., 2016), and 
the source pixel method (Jacob et al., 2016). These methods were 
compared in a previous study and the IME was better adapted to the 
problem (Varon et al., 2018). The relationship between Ueff and U10 and 
the evaluation of IME precision are referred to Guanter et al. (Guanter 
et al., 2021). The local wind speed data is obtained from GEOS-FP 
dataset. The error propagation scheme is referred to Cusworth et al. 
(2020). 

Fig. 7. Real PRISMA TOA data for the end-to-end simulations in this study. Top row, true colour composites of the three PRISMA images (1000× 1000 pixels). The 
red squares represents the location of the 100× 100 pixels subsets where simulated methane plumes are included. Bottom row, TOA radiance map at 2300 nm for the 
100× 100 subsets in the red squares of the top row. CV in the label on the bottom left corner of each panel refers to the coefficient of variation (standard deviation 
over mean) of radiance at 2300 nm within the image. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 8. Simulated concentration enhancement image for 30 m spatial resolution 
with an emission rate of 2000 kg/h by WRF-LES. The plume in the white boxes 
(100× 100 pixels) are for end-to-end simulation. 
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2.8. Data sources 

The real data used in this work are from the imaging spectrometer 
onboard Italian PRISMA mission (Cogliati et al., 2021). PRISMA cap
tures hyperspectral images in the wavelength range of 400 to 2500 nm 
with a spatial sampling of 30 m using a push broom mode and provides 
freely accessible data to the scientific community upon request. 

3. Results 

3.1. Performance comparison between MF and LMF 

We designed 6 Cases with the same H1 of 100 km, H2 of 0 km, VZA of 
0◦, SZA of 30◦, and different column concentrations of 1900 ppb, 2000 

ppb, 2500 ppb, 3000 ppb, 3500 ppb, and 4000 ppb. The methane 
background concentration was always considered to be 1900 ppb. In 
other words, Case 1 was used to generate the reference spectrum. Cases 
2–6 were used to generate the spectrums affected by the methane, with 
known enhancements of 100 ppb, 600 ppb, 1100 ppb, 1600 ppb, and 
2100 ppb, respectively. The objective of this section is to compare the 
MF and the LMF performance using ideal observations, which can be 
obtained with simulated data with no instrument noise, no interference 
from trace gases as H2O and CO2, and no spectral convolution being 
applied. The performances in simulated experiments are shown in 
Table 2. The MF method consistently underestimates the concentration 
enhancement. And the bias of the MF increases as the concentration 
enhancement increases. The bias is up to 23.5% for a concentration 
enhancement of 2100 ppb. In contrast, the bias of LMF is always below 
0.05% for all concentration enhancements. 

3.2. Result from Simulation 1 

The random simulated enhancement can show the performance of 
each method over a large methane enhancement range and with a uni
form sampling. Fig. 9 shows the scatter plot comparing the true and the 
retrieved concentration enhancements over the enhanced pixels. Linear 
regression lines and reference lines with a slope of 1 are plotted along 
with the scatter points. In addition, R2, bias, root-mean-square error 

Table 2 
Comparison of MF and LMF methods.  

Cases MF LMF 

Result (ppb) bias(%) Result (ppb) bias(%) 

Case 2 98.59 − 1.41 100.02 0.02 
Case 3 550.76 − 8.21 599.73 − 0.05 
Case 4 946.10 − 14.00 1099.66 − 0.03 
Case 5 1295.34 − 19.04 1599.82 − 0.01 
Case 6 1606.67 − 23.50 2100.10 0.004  

Fig. 9. Scatterplots comparing true ΔCH4 enhancements and retrieved CH4 enhancements for randomly simulated enhancements varying from 0 to 1500 ppb. (a) to 
(c) represents LMF, MF, and ILMF respectively. Only enhanced pixels are shown here. Points are colored according to the true albedo factors. The solid red line is the 
linear regression of these scattered points. The red dashed line is the line with a slope of 1. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

Fig. 10. Histograms of the retrieved ΔCH4 for the unenhanced pixels from the random enhancement simulation. (a) to (c) represents LMF, MF, and ILMF respec
tively. The mean and standard deviation are shown in the panel. 
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(RMSE) and mean-absolute-error (MAE) are also illustrated respectively. 
From multiple evaluation metrics, the ILMF method is the best and the 
MF method is the worst among the three methods. The best bias is 
achieved by the ILMF with a relative improvement over the reference 
MF of 94.9%. The best RMSE is also achieved by the ILMF with a relative 
improvement over the reference MF of 80%. LMF and ILMF have similar 
R2, but the deviation and RMSE of LMF are higher, which is due to some 
enhanced pixels with a low surface albedo (See dark scatters in Fig. 9 
(a)). The underestimation due to this reason is more obvious in the MF 
method (See dark scatters in Fig. 9 (b)). 

The methane concentration enhancement retrievals for the non
enhanced pixels is shown in Fig. 10. The variation in the retrieved 
concentration enhancement on unenhanced pixels can be used to eval
uate the retrieval presicion (Guanter et al., 2021). The unenhanced 
pixels retrieved by the ILMF have the closest mean to zero and the 

smallest standard deviation. 

3.3. Result from Simulation 2 

The concentration enhancement images simulated by the WRF-LES 
model can be used not only to compare the input concentration 
enhancement with the retrieved concentration enhancement but also 
can be further used to evaluate the performance of the method in 
quantifying the emission rates of point sources. Unlike the random 
simulated concentration enhancements that conform to a uniform dis
tribution, most of the concentration enhancement generated by WRF- 
LES is around 0 ppb. Only a very few pixels near the emission source 
appear to have large concentration enhancements. The retrieved plume 
is clearly visible in the image for each method (see Fig. 11). However, 
the visual judgment of the plume will become more difficult for small 

Fig. 11. Retrieved methane plumes using three methods for emission rates of 2000 kg/h, with instrument precision σ of 1%. (a) to (c) represents LMF, MF, and ILMF 
respectively. 

Fig. 12. Scatterplots comparing true CH4 enhancements and retrieved CH4 enhancements, with emission rate of 1000 kg/h. (a) to (c) represents LMF, MF, and ILMF 
respectively. Only enhanced pixels are shown here. The solid red line is the linear regression of these scattered points. The red dashed line is the line with a slope of 1. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 13. Scatterplots comparing true CH4 enhancements and retrieved CH4 enhancements, with emission rate of 2000 kg/h. (a) to (c) represents LMF, MF, and ILMF 
respectively. Only pixels with a concentration enhancement >200 ppb are shown here. The solid red line is the linear regression of these scattered points. The red 
dashed line is the line with a slope of 1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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emission rates due to the instrument noise. 
To more clearly demonstrate the improvement for large concentra

tion enhancement retrievals, Fig. 12 and Fig. 13 show the scatter plot for 
concentration enhancements >200 ppb. Fig. 12 and Fig. 13 represent 
the method performance for emission rates of 1000 kg/h and 2000 kg/h, 
respectively. Both scatter plots demonstrate the underestimation of MF 
for large concentration enhancements, which will inevitably lead to 
further underestimation of emission rates. 

We used the IME method introduced in Section 2.7 to estimate the 
emission rates from the retrieved methane concentration enhancement 
images. The procedure for constructing the plume mask refers to Varon 
et al. (2018). Instrument precision (σ = 1%) was considered and the 
experiment was repeated 100 times. The result is shown in Table. 3. As 
with the previously shown scatter plots, MF underestimates the emission 
rate more than the other two methods (LMF and ILMF) whether at 1000 
kg/h or 2000 kg/h. The degree of underestimation is 3.3% and 5.8%, 
respectively. Although ILMF also suffers from underestimation, it has 
improved its accuracy by 1.8% and 5.15% compared to MF. 

3.4. Result from Simulation 3 

Fig. 14 presents the results of end-to-end simulations for the four 
selected locations, where clear plumes can be observed on the retrieved 
ΔXCH4 maps. However, the visible plumes are incomplete compared to 
those shown in Fig. 11, limited only to higher concentrations. 

It is important to note that the plume mask greatly affects the esti
mate of the source rate. Actually, the masked plume as an IME input is 
hardly an accurate representation of the true plume. Even on a 

homogeneous surface, plume edges with small concentration enhance
ments may be confused with the instrument noise. For smaller emission 
point sources, less enhanced pixels can be used as the input of IME 
method, which will bring great uncertainty to the estimation of emission 
rate. A statistically significant methane enhancement is generally 
considered greater than twice the standard deviation, which is known as 
significance test. However, there may also be statistically significant 
retrieval artifacts near the plume due to the surface type. These random 
classification errors can be addressed through median filter, followed by 
Gaussian filter and thresholding (Varon et al., 2018). Fig. 15 shows two 
examples of the mask-constructing procedure. If retrieval artifacts are 
inside the plume, this unexpected effect is difficult to eliminate. If the 
plume along the wind direction appear over homogeneous surface, 
fortunately, then a more accurate emission rate can be obtained. 

Additionally, we investigated the performance of the MF method and 
the ILMF method in estimating emissions from four locations and ten 
emission rates. A comparison between the retrieved Q values and the 
true Q values can be seen in Fig. 16. The retrieved emission rates were 
generally underestimated, regardless of whether the MF or the ILMF 
method was used. The underestimation typically resulted from two 
factors: first, the enhancement of the retrieved concentrations was 
underestimated, and second, large fractions of the true plume can not be 
captured in PRISMA-derived ΔXCH4 map. For higher emission rates 
(6000–10,000 kg/h), the MF method showed larger underestimation 
than the ILMF method at all four locations, due to the underestimation of 
retrieved concentration enhancement. The degree of underestimation 
decreased as the emission rates decreased. For example, in Algeria, the 
retrieved Q based on the MF method were underestimated by 32% and 
15% for emission rates of 8000 kg/h and 5000 kg/h, respectively. In 
addition, low emission rates resulted in fewer statistically significant 
plume pixels, making it difficult to provide reliable estimates of emission 
rates. For a Q value of 2000 kg/h at the China site, as shown in Fig. 16, 
the ILMF method showed significant underestimation. However, this 
underestimation was due to few plume pixels, as shown in Fig. 15. For a 
Q value of 1000 kg/h at the China site, neither the MF nor ILMF method 
could retrieve any usable plume pixels after masking. 

Table 3 
Retrieved emission rates (Q) of three methods.  

True Q (kg/h) Retrieved Q (kg/h) 

LMF MF ILMF 

1000 970±13 967±13 985±13 
2000 1902±15 1884±14 1987±16  

Fig. 14. Retrieved ΔXCH4 maps from the end-to-end simulations at the four different sites. Top row, retrieved ΔXCH4 maps (100× 100 pixels) using MF method. 
Bottom row, retrieved ΔXCH4 maps (100× 100 pixels) using ILMF method. μ and σ in the label on the bottom right corner of each panel refers to the mean and 
standard deviation for the no-plume pixels. 
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Furthermore, it is noteworthy that larger underestimation occurred 
in Algeria, which has a bright and homogeneous surface, rather than in 
China, which has a dark and heterogeneous surface, at the same emis
sion rate. This is because the heterogeneous and dark surface is more 
likely to cause retrieval artifacts within the plume, which cannot be 
filtered out by the filters. These retrieval artifacts within the plume will 
mitigate the underestimation of emission rates. However, this unex
pected effect is difficult to evaluate. 

Taking the Algeria site as an example to minimize the ambiguous 
effect due to the retrieval artifacts, Table 4 shows the separate effects of 
concentration retrievals on emission rate underestimation. Table 4 
shows that the underestimation of emission rates caused by concentra
tion retrieval accounts for about 57% of the total underestimation. This 
underestimation resulting from this source is <16% for the ILMF 
method. For a Q value of 10,000 kg/h, the emission rate estimated by the 
ILMF method has an accuracy improvement of 16.4% compared to the 
MF method. 

3.5. Results from real data 

Table 5 demonstrates the emission rates from the 14 methane 
emitters retrieved with PRISMA. Compared with the emission rates 
using the MF method, ILMF consistently estimates a greater emission 
rate than MF. The underestimation of the emission rate for MF comes 
from the underestimation of the ΔXCH4 image, which is attributed to 
the first-order Taylor expansion of Beer lambert law. Some examples of 
retrieved methane plumes from real PRISMA images are shown in 

Fig. 17. Two plumes are clearly visible in Fig. 17 (a), which originate 
from two oil and gas production sites by viewing high-resolution optical 
images from Google Earth. The plumes in Fig. 17 (b) and (c) are caused 
by coal mines. They are both located in Shanxi province, which is one of 
the highest coal producing provinces in China. The plumes in Fig. 17 (d) 
comes from the Permian Basin, one of the largest oil and gas producing 
regions in the United States (Cusworth et al., 2021a). A series of ex
periments have been conducted here to investigate methane leaks (Chen 
et al., 2022; Irakulis-Loitxate et al., 2021). Many false positives are 
clearly visible in the raw images, especially in Shanxi and Permian 
Basin. Most of the false positives are caused by the spectral overlap of 
surface absorption properties with methane absorption in the retrieval 
window. These false positives can be further determined by combining 
local wind direction and high resolution optical images. 

4. Conclusions 

This study revealed the underestimation of the traditional MF 
method in quantifying methane emission point sources, especially for 
strong plumes. We proposed an ILMF to quantify emissions unbiasedly. 
The iterative use of filters can deal with the accurate estimation of mean 
and covariance under the circumstance of a large proportion of 
enhanced pixels. In addition, we employed the ideal pixel-level simu
lation and three image-level simulations to comprehensively assess the 
performance of the different retrieval methods. Lastly, we applied ILMF 
in real data retrieval to estimate emission rates in four countries. 

The ideal pixel-level simulation experiments demonstrated that the 

Fig. 15. Procedure illustration for constructing the plume mask. Top row, retrieved ΔXCH4 map using pseudo-observation from China site for a point source Q =
8000 kg/h, and its corresponding mask constructing procedure. Bottom row, retrieved ΔXCH4 map using pseudo-observation for a point source Q = 2000 kg/h and 
its corresponding mask constructing procedure. The last column indicates the final mask. 
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Fig. 16. Scatterplots comparing true Q and retrieved Q. For Q 2000 kg/h, Q 5000 kg/h, and Q 8000 kg/h, the errors of MF and ILMF are labeled. The black line is the 
line with a slope of 1. 

Table 4 
Comparison of the true Q with the retrieved Q(MF) and the retrieved Q(MF_Ref) for the Algeria site. Q(MF) and Q(ILMF) represent the estimated Q obtained by the MF 
and ILMF methods, respectively, combined with their respective masks. Q(MF_Ref) represents the estimated Q based on the true ΔXCH4 and the mask derived from MF 
method. Q(ILMF_Ref) represent the estimated Q based on the true ΔXCH4 and the mask derived from ILMF method. Proportion (%) indicates the proportion of total 
underestimation caused by concentration retrieval.  

True Q (kg/h) Q(MF) (kg/h) Q(MF_Ref) (kg/h) Proportion (%) Q(ILMF) (kg/h) Q(ILMF_Ref) (kg/h) Proportion (%) 

6000 4273 5283 58.5 5179 5181 0.3 
7000 4887 6099 57.4 5934 6001 6.3 
8000 5438 6902 57.1 6703 6864 12.4 
9000 5976 7704 57.2 7467 7654 12.2 
10,000 6539 8517 57.2 8178 8463 15.7  

Table 5 
Emission rates from 14 methane emitters retrieved with PRISMA.   

Date Country Latitude Longitude Emission Rate Estimates (kg/h)      

MF ILMF 

Emitter 1 2020/08/30 Algeria 31.778◦N 5.995◦E 3840±1540 3900±1560 
Emitter 2 2020/08/30 Algeria 31.767◦N 5.997◦E 2790±1116 3010±1204 
Emitter 3 2021/02/06 China 36.233◦N 112.945◦E 12,010±4800 12,850±5140 
Emitter 4 2021/02/06 China 36.246◦N 112.990◦E 14,020±5600 14,730±5900 
Emitter 5 2021/02/17 United States 32.205◦N 103.715◦W 2080±830 2370±950 
Emitter 6 2021/07/31 Turkmenistan 36.474◦N 61.459◦◦E 1630±652 2561±1024 
Emitter 7 2021/07/31 Turkmenistan 36.413◦N 61.476◦◦E 953±381 1323±529 
Emitter 8 2021/07/31 Turkmenistan 36.511◦N 61.650◦◦E 490±196 691±276 
Emitter 9 2021/07/31 Turkmenistan 36.511◦N 61.661◦◦E 614±245 902±361 
Emitter 10 2021/08/19 Algeria 31.798◦N 6.011◦E 5781±2312 7241±2896 
Emitter 11 2021/08/19 Algeria 31.806◦N 6.142◦E 1137±454 1314±526 
Emitter 12 2021/08/19 Algeria 31.806◦N 6.155◦E 1476±590 1634±654  
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MF method lead to an underestimated methane concentration 
enhancement, which was up to 23.5% for a concentration enhancement 
of 2100 ppb. In the image-level Simulation 1, the concentration en
hancements retrieved by ILMF matched best with the true enhancement, 
with an R2 of 0.984 and a small RMSE of 55.856 ppb. The relative im
provements in bias and RMSE reached 94.9% and 80%, respectively, 
compared to the reference MF method. In the image-level Simulation 2, 
the ΔXCH4 images retrieved by LMF, MF and ILMF were visually 
similar, but the concentration enhancement over a few highly enhanced 
pixels were underestimated by MF. As a result, emission rates of 1000 
kg/h and 2000 kg/h were underestimated by 3.3% and 5.8% by the MF 
method. In the image-level Simulation 3, the performance of ILMF was 
evaluated in four different methane hotspot regions. In the context of 
ideal surface observations, the MF method tends to underestimate 
emission rates due to two factors, with underestimation caused by 
concentration retrieval accounting for approximately 57%. This under
estimation can be addressed by utilizing the ILMF method proposed in 
this study. However, the underestimation caused by plume edge omis
sions still remains a challenge. Since the retrieval precision affects the 
size of the mask, it is necessary to further investigate the effect of 
retrieval precision on the emission rate estimating. It is noteworthy that 
the presence of retrieval artifacts in the plume can lead to an over
estimation of the emission rates, which is more likely to occur on het
erogeneous surfaces. In other words, the underestimation of emission 
rates due to concentration retrieval and plume edge omission would be 
unquantifiably mitigated. Findings from our simulation experiments 
provides compelling evidence of a systemic underestimation inherent to 
the MF method, spanning both concentration retrieval and emission rate 
estimation. Notably, our analysis reveals a concerning trend whereby 
the magnitude of underestimation amplifies in tandem with higher 
concentration enhancements. These insights emphasize the critical 
importance of robust and accurate concentration retrieval method for 
quantifing methane point sources. 

The results from the real data confirm the dependence of the retrieval 
on the surface type. Bright and homogeneous surfaces in Algeria and 
Turkmenistan facilitate the detection of plumes. A careful visual in
spection is required to distinguish a large number of potential false 
positives on heterogeneous surfaces. The concentration enhancement of 
true plume gradually decreases along the direction of wind speed, while 
the false plume is similar with the shape of the specific surface type. 

Our results demonstrate the great potential of PRISMA-like satellites 
for the detection and quantification of methane point sources, especially 
on bright and homogeneous surfaces. Our proposed ILMF method 
effectively addresses the issue of systematic underestimation of con
centration enhancement that is commonly associated with traditional 
MF method. This novel method offers a more accurate and reliable 

means of assessing concentration enhancement, thus providing accurate 
input for quantifying emission rates. 
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