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We propose a new algorithm for re-
trieving CO2 for the first IPDA lidar
satellite.
The algorithm considering spatial corre-
lation has a smaller random error.
The results obtained by this algorithm
can be verified using TCCON data.
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A B S T R A C T

We describe the approach to estimating the atmospheric carbon dioxide (CO2) for the Aerosol and Carbon
Detection Lidar (ACDL) onboard the Atmospheric Environment Monitoring Satellite (AEMS). The method
estimates the optimal state vector by maximizing the measurement posterior probability under a given
prior state vector probability distribution. A priori constraint considering the spatial correlation is used as
regularization to solve the ill-posed problem. We ran a series of observing system simulation experiments
to demonstrate the critical outcome and character percentage uncertainty reduction. The results show that
the state vector uncertainty can be reduced by ∼ 10% near the surface for the single sounding. The CO2
column-averaged dry air mole fraction (XCO2

) derived by this algorithm is more stable than that obtained by
the conventional algorithm and enables the monitoring of concentration changes for the multiple soundings.
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Similar to the Total Carbon Column Observing Network (TCCON), the averaging kernel is also provided for
the subsequent flux inversion. Our simulation experiments demonstrate that the structure of the prior error
covariance plays an important role in revealing vertical information from observations. In addition, we applied
this algorithm to an airborne ACDL experiment for the retrieval of atmospheric CO2 over Bohai Bay on March
14, 2019. AEMS’s observations with a small footprint will yield important information on the carbon cycle,
especially for small but strong emission sources.
1. Introduction

Greenhouse gases (GHGs), mainly carbon dioxide, are considered to
be the most influential factor in global climate change, posing a serious
challenge to global sustainable development (Eggleston et al., 2006; Pei
et al., 2023). The international community has gradually reached a con-
sensus that carbon emission reduction is the most effective way to curb
global warming. The United Nations Framework Convention on Climate
Change (UNFCCC) set out the need for measurable, reportable, and
verifiable (MRV) national action to reduce emissions (Perugini et al.,
2021). The 49th Intergovernmental Panel on Climate Change (IPCC)
meeting recommended providing an independent, top-down assessment
of emission inventories through atmospheric concentration observa-
tion (Buendia et al., 2019). The geographic distribution of stations in
the ground-based observation networks (e.g., Network for the Detection
of Atmospheric Composition Change (NDACC) and The Total Carbon
Column Observing Network (TCCON)) is very heterogeneous, making it
difficult to accurately understand the characteristics and mechanisms of
source–sink changes of greenhouse gases. Satellite remote sensing has
the advantages of objectivity, stability, and large coverage, and has be-
come an indispensable technical tool for monitoring global atmospheric
CO2 concentrations. By detecting solar short-wave infrared radiation
reflected from the surface, passive remote sensing satellites such as
GOSAT, OCO-2 (O’Dell et al., 2012; Connor et al., 2008), and Tansat
retrieve the CO2 column-averaged dry air mole fraction (the ratio of the
total number of CO2 molecules to the total number of dry air molecules
on the total column), called 𝑋CO2

. Therefore, there are no effective
observations at night or in high latitudes in winter. In addition, due
to the interference of clouds and aerosols (Zhang et al., 2023), the data
efficiency of passive remote sensing detection satellites is only about
10% (Dupuy et al., 2016), and the detection accuracy is also severely
limited.

The Atmospheric Environment Monitoring Satellite (AEMS)
(Li et al., 2022b; Meng et al., 2022; Han et al., 2018), also known as
Daqi-1(DQ-1), was successfully launched on April 16, 2022. It operates
in a sun-synchronous orbit, with a 705 km orbital altitude, a ∼13:30
local overpass time, a 98.2◦ inclination, and a 16 days revisit rate. This
platform is equipped with 5 instruments, including the Aerosol and
Carbon Detection Lidar (ACDL) (Ke et al., 2022; Cao et al., 2022), the
Particulate Observing Scanning Polarimeter (POSP) (Li et al., 2022a),
the Directional Polarimetric Camera (DPC) (Li et al., 2018), the Envi-
ronment Monitoring Instrument (EMI) (Zhang et al., 2020), and a wide
field imaging spectrometer. ACDL, developed by the Shanghai Institute
of Optics and Fine Mechanics, is the first spaceborne integrated-path
differential absorption (IPDA) lidar system. As a prototype of the space-
borne IPDA lidar system, some airborne campaigns were conducted to
test the instruments as well as the retrieval algorithms (Xiang et al.,
2021). ACDL is expected to improve our understanding of the global
distribution of carbon sources and sinks, especially at high latitudes,
cloudy areas, and nighttime for supplementation. The conventional
IPDA lidar algorithm takes the ratio of the measured CO2 differential
optical depth and the integrated weighting function (IWF) as the
retrieval result (Refaat et al., 2016). However, note that this retrieval
result cannot be directly verified using the TCCON due to the definition
difference, which weights CO2 concentration by IWF, rather than by
the total number of dry air molecules. In this work, the definition of
2

𝑋CO2
follows that of TCCON and is used to express the ratio of the
number of CO2 molecules to the total number of air molecules in the
dry air column. To distinguish between the two, we use IWF-𝑋CO2

to
denote the retrieval results obtained by the conventional lidar method.
In addition, the IWF-𝑋CO2

of a single pulse is hard to be used directly
due to measurement errors. Previous studies have often obtained the
average IWF-𝑋CO2

by averaging over 30 s or longer.
Here, we develop a retrieval algorithm for AEMS based on the

Bayesian optimal estimation (OE) and provide a general framework for
similar atmospheric gas measurements. Unlike the least squares solu-
tion to the well-posed problem, Bayesian optimal estimation utilizes the
informative prior covariance matrix to regularize the ill-posed problem,
as described by Rodgers (2000). In addition to the constraints on the
state vector by the diagonal elements of the prior covariance matrix
(𝑆𝑎), we configure non-diagonal elements considering the character-
istics of a well-mixed GHG s concentration in practice. The 𝑆𝑎 with
such a structure can effectively avoid unphysical large wiggles in the
posterior vertical profile and adjacent horizontal concentrations. And
our definition of retrieved 𝑋CO2

is consistent with that of the passive
trace-gas column measurements (e.g., TCCON Wunch et al., 2011, OCO-
2 Wunch et al., 2017, GOSAT Yokota et al., 2009, Tansat Yang et al.,
2018, MethaneSAT Wofsy and Hamburg, 2019 and MethaneAIR Stae-
bell et al., 2021). The paper is organized as follows. Section 2 describes
the measurement principle of the IPDA lidar system and the instrument
parameters. In Section 3, we introduce the retrieval algorithm proposed
in this work in detail, as well as the error analysis involved in the
subsequent experiments. In Section 4, we utilize observing system sim-
ulation experiments (OSSEs) to compare multiple retrieval strategies in
different scenarios. In Section 5, this algorithm is applied to an airborne
experiment of this IPDA lidar system. Section 6 describes the limitations
and potential applications of the work. We then summarize the whole
study in Section 7. This work is motivated by AEMS but is generally
applicable to any column concentration retrieval of atmospheric trace
gases.

2. Experimental setup

The schematic of IPDA lidar system is shown in Fig. 1. The main
principle of IPDA lidar system is to measure the CO2 differential ab-
sorption optical depth (DAOD) by using the difference in laser signal
between the CO2 central absorption line (on-line) and the absorption
wing reference line (off-line) (Han et al., 2017a). The absorption cross-
section of CO2 molecules is large for on-line wavelengths and small
for off-line wavelengths. Due to the small difference between on-
line and off-line wavelengths, the interferences of aerosols and other
gases are eliminated by the differential technique (Han et al., 2017a),
which is one of the advantages of IPDA lidar system over the passive
observation. Thus, it can be assumed that DAOD is caused only by CO2
absorption in the column.

The main parameters of the airborne and spaceborne ACDL systems
are listed in Table 1.

The photographs of the IPDA lidar system in the airborne experi-
ment are shown in Fig. 2.

3. Method

Fig. 3 shows an overview of the retrieval algorithm for IPDA lidar
system. Pre-processing includes processing of raw lidar data, calcula-

tion of optical range, estimation of signal-to-noise ratio (SNR), cloud
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Fig. 1. Schematic of the 1.57-μm IPDA lidar measurements of the CO2 DAOD.

Fig. 2. Photographs of the IPDA lidar system onboard Yun-8 aircraft.

Table 1
The main parameters of the airborne and spaceborne ACDL systems.

Parameters Airborne value Spaceborne value

Online wavelength 1572.024 nm 1572.024 nm
Offline wavelength 1572.085 nm 1572.085 nm
Pulse energy 6/3 (on/off) mJ 75 mJ
Pulse length (on/off) 17 ns 15 ns
Pulse separation 200 μs 200 μs
Repetition frequency 30 Hz 20 Hz
Pulse spectral linewidth (OPA) 30 MHz 50 MHz
Receiver optical efficiency 38% 52%
Telescope diameter 150 mm 1 m
Field of view 1 mrad 0.2 mrad
Dark current (noise equivalent power) 64 fw/

√

Hz 64 fw/
√

Hz
Optical filter bandwidth 0.45 nm 0.45 nm

identification, interpolation of meteorological data, and construction of
prior state vectors. Spatial correlation matrix can be constructed based
on location, reanalysis data, and practical considerations. Further the
𝑆𝑎 matrix is constructed and fed into the forward model. The forward
model and the retrieval strategy are described in detail in the next
section.

3.1. Forward model

DAOD 𝛥𝜏 measured by IPDA lidar at a fixed altitude 𝑅𝐴 is given
by (Refaat et al., 2016)

𝛥𝜏
(

𝜆on, 𝜆off , 𝑅𝐴
)

= ln

{

𝑃
(

𝜆off , 𝑅𝐴
)

⋅ 𝑡
(

𝜆off
)

∕𝐸
(

𝜆off
)

( ) ( ) ( )

}

, (1)
3

𝑃 𝜆on, 𝑅𝐴 ⋅ 𝑡 𝜆on ∕𝐸 𝜆on
where 𝑃 is received power (in watts) at wavelength 𝜆, 𝑡 is the effective
pulse width of the return pulse at 𝜆, and 𝐸 is the transmitted laser
energy at 𝜆.

In addition, 𝛥𝜏 can be modeled integrally by Eq. (2) (Refaat et al.,
2016)

𝛥𝜏
(

𝜆on, 𝜆off , 𝑅𝐴
)

= 2∫

0

𝑅𝐴

𝛥𝜎
(

𝜆on, 𝜆off , 𝑟
)

𝑢(𝑟)𝑁𝑑𝑟𝑦(𝑟)

106
d𝑟, (2)

where 𝛥𝜎 is the CO2 differential cross section for the 𝜆on and 𝜆off
wavelengths, 𝑢(𝑟) is CO2 dry-air volume mixing ratio (VMR) in parts
per million (ppm) at altitude 𝑟, and 𝑁𝑑𝑟𝑦(𝑟) is the total molecular
number density of dry air (in m−3) at altitude 𝑟. The CO2 absorption
cross section varies with pressure and temperature. The simulated
absorption cross sections at different altitudes is shown in Fig. 4, which
are calculated by HAPI tool (Kochanov et al., 2016) and based on the
HITRAN database (Rothman et al., 2009). The atmospheric column
is usually divided into n layers from the surface to the observation
position due to the nonlinear absorption cross section with respect
to temperature and pressure. The interpolated cross sections at the
center of each sub-layer are used to calculate the respective optical
depths, which are then summed to obtain the total optical depth of
atmospheric column. Similar to the Atmospheric CO2 Observations
from Space (ACOS) CO2 retrieval algorithm (O’Dell et al., 2012), it is
assumed that the CO2 concentration at the center of the sublayer, varies
linearly with pressure.

The forward model 𝐹 described in Eq. (3) can relate the state vector
𝑥 to the observation vector 𝑦,

𝑦 = 𝐹 (𝑥) + 𝜖, (3)

where 𝑦 is the measured DAOD provided by IPDA lidar system, 𝑥 is CO2
mixing ratio profile, and 𝜖 is assumed to be zero-mean, white Gaussian
noise, which includes contributions from both the forward model error
and the instrument error (Hou et al., 2016, 2020). Unlike passive
remote sensing instruments, IPDA lidar systems rely on simple physical
principles to derive the CO2 abundance from the DAOD. The effects of
aerosols and thin clouds are generally negligible (Han et al., 2017b).
Therefore, we only considered the instrument error in this work for
simplicity. For single soundings measurement, the dimensionality of
the state vector is the number of air layers. For multiple soundings
measurement, multiple profiles are retrieved simultaneously and the
dimensionality of the state vector is the product of the number of
soundings and the number of air layers.

3.2. Retrieval strategy

The solution to the retrieval problem is to find the statistically opti-
mal 𝑥 according to the given 𝑦. When sufficient observation information
is available, the closed solution of the state vector can be obtained
by the least squares method (Sun et al., 2021; Wunch et al., 2010),
which is considered as a well-posed problem. When the observation
information is not sufficient, the number of observed equations is
smaller than the number of unknowns to be solved, which is considered
as a ill-posed problem. In the optimal estimation algorithm as described
in Rodgers (2000), the ill-posed problem can be solved by assuming a
informative prior (Zeng et al., 2021; Zhou et al., 2019) or reducting
dimensions (Ramanathan et al., 2018; Kulawik et al., 2017).

According to Bayes’ theorem, the posterior probability density func-
tion (PDF) of the state vector 𝑥 is given by

𝑃 (𝑥 ∣ 𝑦) ∝ 𝑃 (𝑦 ∣ 𝑥)𝑃 (𝑥), (4)

where 𝑃 (𝑥) is the prior PDF of state vector and 𝑃 (𝑦 ∣ 𝑥) is the condi-
tional PDF of observation vector given the true state vector. Assuming
𝑃 (𝑦 ∣ 𝑥) and 𝑃 (𝑥) follow Gaussian distributions, posterior PDF can be
given by

𝑃 (𝑥 ∣ 𝑦) ∝ 𝑒𝑥𝑝{−1
2
(𝑥 − 𝑥𝑎)

𝑇𝑆−1
𝑎 (𝑥 − 𝑥𝑎)

−1 (𝑦 − 𝐹 (𝑥))𝑇𝑆−1(𝑦 − 𝐹 (𝑥))},
(5)
2 𝑂
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Fig. 3. Flowchart of the atmosphere CO2 retrieval algorithm for the IPDA lidar system.
Fig. 4. Simulation of the CO2 absorption cross section at 𝜆𝑜𝑛 and 𝜆𝑜𝑓𝑓 at different
altitudes. The parameters of spectral lines are obtained from the HITRAN database and
convolved with a Voigt profile. Values are for the US Standard Atmosphere (Anderson
et al., 1986).

where 𝑥𝑎 is the prior state vector, 𝑆𝑎 is the error covariance matrix
of the a priori state vector and 𝑆𝑂 is the error covariance matrix of
the observation vector. Eq. (6) gives the general solution for the maxi-
mum a posteriori (MAP) which is regarded as regularized a maximum
likelihood estimate (MLE).

𝑥𝑝 = 𝑥𝑎 + 𝐺
(

𝑦 −𝐾𝑥𝑎
)

(6)

where 𝐾 is Jacobian of the state vector with respect to the measurement
vector (𝐾 = 𝜕𝑦

𝜕𝑥 ), also known as the weighting function matrix. 𝐺 is the
gain matrix, given by

𝐺 = 𝜕𝑥
𝜕𝑦

=
(

𝐾𝑇𝑆−1
𝑂 𝐾 + 𝑆−1

𝑎
)−1 𝐾𝑇𝑆−1

𝑂 (7)

The averaging kernel matrix 𝐴 is given by

𝐴 =
𝜕𝑥𝑝
𝜕𝑥

= 𝐺𝐾 (8)

𝐴𝑖𝑗 describing the derivative of the retrieved state 𝑥𝑝 at the 𝑖th level
to the true state 𝑥 at the 𝑗th level. The degree of freedom (DOF) of
signal (Bowman et al., 2006) can be given by the trace of matrix 𝐴
(𝐷𝑂𝐹𝑠 = 𝑡𝑟(𝐴)). Substituting Eq. (3) into Eq. (6) and using Jacobian to
expand 𝐹 (𝑥), we obtain

𝑥𝑝 = 𝑥𝑎 + 𝐴(𝑥 − 𝑥𝑎) + 𝐺𝜖. (9)

Intuitively, the retrieved 𝑥𝑝 is not a straightforward estimate of
the true state, but an estimate of a state smoothed by the averaging
4

kernel. Nevertheless, the retrieval is sufficient to constraint the CO2
flux for the further study. It is critical to simulate the 𝑥𝑝 obtained
by AEMS for a given CO2 profile. The relationship between 𝑋𝑝 and
flux can be established by simulating true CO2 profile in Eq. (9) with
flux. The relationship between CO2 profile and flux can be established
by atmospheric transport model like Atmospheric Chemistry Model
from Goddard Earth Observing System (GEOS-CHEM) for continental
scale (Zhang et al., 2021; Shen et al., 2022), Community Multiscale
Air Quality (CMAQ) model for national scale (Villalobos et al., 2020)
and Stochastic Time-Inverted Lagrangian Transport Model (STILT) for
megacity scale (Wu et al., 2018; Ye et al., 2020).

Ignoring the measurement error and multiplying both sides by
pressure weighting function ℎ𝑇 in Eq. (9), we obtain

𝑋𝑝
CO2

= 𝑋𝑎
CO2

+ ℎ𝑇𝐴(𝑥𝑚 − 𝑥𝑎) (10)

where 𝑛 is the number of atmospheric layers, ℎ is pressure weighting
function and 𝑥𝑚 is the simulated CO2 profile. Details about ℎ can be
found in O’Dell et al. (2012). The adoption of averaging kernel matrix
and prior state can remove the dependence of the 𝑥𝑝 on the 𝑥𝑎 and
allows for the further flux-inversion studies.

3.3. Error analysis

The retrieval error is the difference between the retrieved 𝑥𝑝 and
the true state.

𝛿𝑥 = 𝑥𝑝 − 𝑥 (11)

Substituting Eq. (9) into Eq. (11) gives

𝛿𝑥 = (𝐼 − 𝐴)(𝑥 − 𝑥𝑎) + 𝐺𝜖. (12)

where 𝐼 is an identity matrix. Then we derive the total error or a
posteriori covariance matrix from these two sources as

𝑆𝑝 = (𝐼 − 𝐴)𝑆𝑎(𝐼 − 𝐴)𝑇
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑆𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔 𝐸𝑟𝑟𝑜𝑟

+ 𝐺𝑆𝑂𝐺
𝑇

⏟⏞⏟⏞⏟
𝐼𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡 𝐸𝑟𝑟𝑜𝑟

(13)

Recasting,

𝑆𝑝 =
(

𝐾𝑇𝑆−1
𝑂 𝐾 + 𝑆−1

𝑎
)−1 . (14)

𝑆𝑝 can be characterized with the uncertainties of the a priori state
and the instrument noise (Kuai et al., 2016). The percentage uncer-
tainty reduction is a good indicator to assess the potential of observa-
tions to constrain the CO2 profile, which can be obtained (Villalobos
et al., 2020), as follows:

𝑈 = (1 −
𝜎𝑝 ) × 100%, (15)

𝜎𝑎
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Fig. 5. A typical priori CO2 error correlation matrix. The white numbers on the
diagonal line represent the square root of diagonal elements of 𝑆𝑎. The colors indicate
the error correlation between CO2 concentrations at different layers, arranged TOA to
surface from top to bottom and right to left.

where 𝜎𝑎 and 𝜎𝑝 are the square roots of the diagonal elements of 𝑆𝑎
and 𝑆𝑝, respectively, that is the standard deviation of the prior and
posterior. According to the definition of ℎ (𝑋CO2

= ℎ𝑇 𝑥), the error
variance of retrieved 𝑋𝑝

CO2
is give by

𝜎2
𝑋𝑝
CO2

= ℎ𝑇𝑆𝑝ℎ. (16)

3.4. A priori constraints

CO2 is a well-mixed gas vertically and horizontally in the tropo-
sphere due to its long enough lifetime. Measurements of CO2 VMR show
variations of up to 30% near the surface, and these variations decrease
rapidly with increasing height (Griffith et al., 2002). The record of CO2
observations clearly shows that CO2 spreads very evenly throughout
the global atmosphere. The prior CO2 profile can be obtained from
model climatology, which is considered accurate unless influenced by
upstream sources (sinks). For instance, CO2 concentration in the plan-
etary boundary layer varies by a few tens of ppm, or even several tens,
depending on the vertical and horizontal distance of the observation
point from the emission sources (e.g., the coal-fired power plant and
densely populated industrialized city) (Yang et al., 2023). Following
some previous studies (Baker et al., 2022; Kunik et al., 2019; Lauvaux
et al., 2016), the error correlation is considered to decay exponentially
with distance in the vertical direction. The special features are the
decreasing correlation length with increasing height and the lack of
correlation between the stratosphere and troposphere, which is due
to the characteristics of the vertical motion of the atmosphere (O’Dell
et al., 2012). In principle, the calculation of the correlation length
requires a true concentration distribution. Thus, the correlation length
is chosen mostly based on practical considerations. Here we set the
vertical correlation length near the surface to 5 km. The 1𝜎 priori error
is set slightly larger in order to give adequate freedom to the retrieval to
yield a posteriori profile that may deviate more from the prior profile.
Details of how correlations are obtained in single sounding and multiple
soundings are presented in Appendix A.

A typical correlation matrix and the diagonal elements of 𝑆𝑎 are
shown in Fig. 5. In the simulation experiments, each atmospheric
layer is subdivided into 20 sublayers equally in pressure. The largest
concentration uncertainty occur in the near-surface layer, because the
flux-induced concentration enhancement has the largest effect on this
layer. Moreover, this enhancement becomes progressively weaker with
increasing altitude up to the top of the troposphere. Mathematically,
this is described as a positive correlation between adjacent layers.
5

Table 2
Description of single sounding and multiple soundings.

Single sounding Multiple soundings

Number of layers 20 20
Number of columns 1 5
Dimension of 𝑥𝑎 20 100
Purpose Vertical correlation Horizontal correlation

3.5. WRF-STILT

To obtain a more realistic concentration for the ‘‘emission scenario’’
of OSSEs, we use the Weather Research and Forecasting-Stochastic
Time Inverted Lagrangian Transport (WRF-STILT) model to simulate
concentration enhancement caused by anthropogenic carbon emissions.
STILT (Lin et al., 2003) is an atmospheric transport model based on
Lagrangian random wander theory, which uses footprint weights to
quantify the sensitivity of the concentration at the observation location
to the upstream source (sink). The specific principle is that by releasing
a large number of air particles at the observation location and simulat-
ing the backward trajectory of these particles, the quantitative footprint
value is determined by the total number of particles below the surface
layer height and the residence time of each particle (Wu et al., 2018).
The WRF model (Skamarock et al., 2019) is used to provide high spatial
and temporal resolution meteorological fields to the STILT model,
mainly including 2-D wind speed, air pressure, relative humidity, air
density, etc. for different simulated layer heights (Liu et al., 2023).

The model uses an 1 × 1 km2 meteorological calculations and
urban carbon fluxes from Emissions Database for Global Atmospheric
Research (EDGAR). Hourly WRF fields contain 51 vertical levels with
boundary conditions from 6 h 0.5◦ × 0.5◦ NCEP final operational global
analysis data. The main physical module setup for the WRF operation
is similar to the previous study (Ye et al., 2020). For the STILT simula-
tions, 1000 particles are released and transported backward for up to 7
days with a temporal resolution of 1 h. We simulated the concentration
enhancement downwind of a typical city in the afternoon of December
29, 2014. The vertical distance of the city from the overpass is about
60 km.

4. OSSEs

In the OSSEs, we designed single sounding experiment and multiple
soundings experiment to illustrate the contribution of vertical and
horizontal correlation, respectively. Specifically, the number of layers,
the number of columns and the dimension of 𝑥𝑎 in these two sets of
experiments are shown in Table 2.

4.1. Single sounding

Here we investigate the vertical correlation with a simulated the
single pulse measurement in two different scenarios, affected (in the
plume) and unaffected (out of the plume) by emissions. The plume
is simulated by WRF-STILT model and the simulated CO2 profile in
the plume is shown in Fig. 6(b). The large enhancement (20 ppm) is
mainly below the boundary layer height compared to the background
concentration. Correspondingly, we assume the true CO2 profiles (black
lines in Fig. 6), temperature and pressure profiles for two scenarios.
Further, pseudo-measurements are generated with 3% instrument noise
using the forward model described in Section 3.1. We selected a set
of pseudo-observations to demonstrate the smoothness imposed by the
vertical correlation structure on the a posteriori profiles. The main
results are shown in Figs. 6–8.

Fig. 6 indicates that retrievals that take into account vertical cor-
relation perform better by comparing with the true profiles, whether
out of the plume (Fig. 6(a)) or in the plume (Fig. 6(b)). The same
diagonal elements are used in the 𝑆 of both strategies, whereas the
𝑎
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non-diagonal element of 𝑆𝑎 without considering vertical correlation
is zero, which assumes that the errors between different layers are
uncorrelated. As shown in Fig. 6(a), the posterior profile is closer to the
true than the prior, as is the 𝑋CO2

. The retrieval without considering
the vertical correlation is inadequate for the adjustment of the prior
profile, mainly focusing on the near-surface with large prior errors and
large differential absorption cross section. The same phenomenon is
also shown in Fig. 6(b). And in this case, although the posterior is
better than the prior, it is not optimized enough for the enhancement
of near-surface concentrations. Similarly, the technique of imposing
smoothness by defining correlations between the elements of the profile
was applied in some previous studies (O’Dell et al., 2012; Kuai et al.,
2016; Bowman et al., 2006).

Fig. 7 demonstrates the column averaging kernels for 4 cases.
They have similar vertical structures, with maximum values near the
surface and decreasing then increasing with increasing height at the
troposphere. The column averaging kernels with vertical correlation
considered are significantly higher than that not considered. The DOF
was 0.986, 0.932, 0.9989, 0.9956 for the four cases, respectively. In
the same scenario, the DOF with vertical correlation considered is
smaller than the one without. This is due to the fact that more priori
information is provided when the measurement is unchanged.

Fig. 8 shows the uncertainty reduction for 4 cases. There is a
significant improvement in the uncertainty reduction of the retrieval
considering the vertical correlation. The retrievals that do not take
into account vertical correlation reduce the uncertainty only near the
surface. The retrievals that take into account vertical correlation reduce
the uncertainty across the column except in the stratosphere.

Note that although in principle the OE algorithm has the ability to
obtain an a posteriori profile, the concentration of a layer alone cannot
be used directly because it is not an independent observation. In other
words, when using the satellite retrieval results to constrain the flux, we
must use 𝑋𝑝

CO2
(or 𝑥𝑝) accompanied with a priori profile and averaging

kernel matrix to provide an independent assessment.
Due to instrument noise, the retrieval results of single sounding

sometimes bring the false optimization. This random error can be
eliminated by the scheme of averaging 𝛥𝜏 or averaging signals before
log (Zhu et al., 2020). Next section we introduce a error covariance
structure with horizontal correlation to addresses this issue.

4.2. Multiple soundings

We assume a set of true CO2 profiles as ‘‘no emission scenario’’. Fur-
ther, we simulate the enhanced CO2 profiles using WRF-STILT model
as ‘‘emission scenario’’. The true profile is about 10 to 20 ppm higher
than the true profile near the surface due to the flux influence. For pre-
sentation purposes, we have selected only the five adjacent soundings.
The error covariance matrices (𝑆𝑎; an 100 × 100 matrix) consider-
ing vertical correlation (a) and not considering vertical correlation
(b) are shown in Fig. 9. The mathematical expressions are shown in
Appendix B. The submatrix from the lower left to the upper right corner
represents sounding 1 to 5, respectively. The diagonal elements of the
lower left submatrix represent the ground to the top of the atmosphere
from the bottom to the top, respectively. Based on the conclusions
of the previous section, vertical correlation is all considered in this
section. The horizontal error correlation is considered to decay expo-
nentially with distance. Here we set the horizontal correlation length to
10 km. We assume that measurement correlations (off-diagonal values
of 𝑆𝑂) are zero because the pulses are regarded independent of each
other.

The retrieval results are shown in Figs. 10 and 11. For the ‘‘no emis-
sion scenario’’ (left column), retrievals that do not take into account
the horizontal correlation are likely to misadjust, like (a) and (d). A
posteriori profiles (green lines) are worse than a priori profiles (red
lines) by comparing the true profiles (black lines). Oppositely, retrievals
6

(blue lines) that take into account the horizontal correlation can avoid
Fig. 6. Retrieved profiles for measurement of a simulated single pulse out of the plume
(a) and in the plume (b). The black, red, blue, and green lines represent the true
profiles, prior profiles, posterior profiles under vertical correlation (VC), and a posterior
profiles without VC, respectively. The prior profiles in (a) and (b) are the same.

Fig. 7. Column averaging kernel for the single sounding. For case 1, not considering
vertical correlation out of the plume. For case 2, considering vertical correlation out
of the plume. For case 3, not considering vertical correlation in the plume. For case 4,
considering vertical correlation in the plume.

this unexpected phenomenon. Fig. 11(a) also demonstrates the small
variation of the posterior 𝑋𝑝

CO2
considering the horizontal correlation.

For the ‘‘emission scenario’’ (right column), retrieved posterior pro-
files (blue lines) considering the horizontal correlation have better
optimization. And most importantly, it can detect the changing gra-
dient of the concentration at five locations, as also demonstrated by
Fig. 11(b). The true 𝑋CO2

was highest at the fourth sounding, which was
less than 1 ppm higher than the others. The same trends can be seen
in the posterior profiles (blue line) considering horizontal correlation.
Although the true 𝑋CO2

is always higher than the a posteriori 𝑋𝑝
CO2

, this
does not affect the inversion of the fluxes. This is because this ‘‘bias’’
will be eliminated when extracting the concentration enhancement by
subtracting the background concentration. In addition, it is normal for
the true concentration enhancement to be larger than the a posteriori
concentration enhancement due to the average kernel being less than
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Fig. 8. The percentage uncertainty reduction. For case 1, not considering vertical
correlation out of the plume. For case 2, considering vertical correlation out of the
plume. For case 3, not considering vertical correlation in the plume. For case 4,
considering vertical correlation in the plume.

Fig. 9. The prior error covariance 𝑆𝑎 structure considering horizontal correlation (HC)
and not considering HC.

1. It is worth mentioning that the extraction of relative changes in
concentration is essential for the emission detection and flux inversion.
A very small error in the posteriori 𝑋CO2

can lead to a huge error in
flux inversion.

In the ‘‘no emissions scenario’’, the DOF without considering the
horizontal correlation and with considering the horizontal correlation
are 4.937 and 4.931, respectively. In the ‘‘emissions scenario’’, the DOF
without considering the horizontal correlation and with considering the
horizontal correlation are 4.957 and 4.953, respectively.

Conventional retrieve method of IPDA lidar (Shi et al., 2021a; Han
et al., 2017b) can only obtain IWF-𝑋CO2

(purple line in Fig. 11) without
profile. Note that the definition of IWF-𝑋 here is not the same as
7

CO2
Fig. 10. Retrieved profiles for measurements of simulated multiple pulses. The left
((a)–(e)) and right ((j)–(i)) columns represent the ‘‘no-emissions scenario’’ and the
‘‘emissions scenario’’, respectively. The black, red, blue, and green lines represent the
true, a priori, a posteriori under horizontal correlation (HC), and a posteriori without
horizontal correlation profiles, respectively. The first to fifth rows represent each of
the five soundings. The a priori profiles in the left and the right are the same.

𝑋CO2
of TCCON (Wunch et al., 2011) due to the different weighting

function. IWF-𝑋CO2
does not express the CO2 column-averaged volume

mixing ratio in the physical sense. Here we still compare the two 𝑋CO2
s

together in Fig. 11 in order to examine their relative changes. The
IWF-𝑋CO2

fluctuations are very large due to instrument noise and the
absence of a priori information constraints, regardless of the scenario.
The averaging method is not suitable for measurements with a small
number of available pulses. However, the OE algorithm that we adopt
considering the horizontal correlation yields more stable and reliable
results.
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Fig. 11. Retrieved 𝑋CO2
for measurements of simulated multiple pulses for the ‘‘no-

emissions scenario’’ (a) and ‘‘emissions scenario’’ (b). The black, red, blue, green and
purple lines represent of the true, a priori, a posteriori under horizontal correlation,
a posteriori without horizontal correlation and IWF-derived 𝑋CO2

(Shi et al., 2021a),
respectively.

5. Airborne experiment

To elucidate the approach discribed in the previous sections, we
apply this retrieval algorithm to an airborne validation experiment on
March 14, 2019 over the Bohai Bay of China at 39.9◦ latitude and
119.6◦ longitude. This campaign is part of the AEMS. Main purpose
of this campaign is evaluating the performance of the CO2-IPDA li-
dar system produced by Shanghai Institute of Optics and Technology,
which is carried on board of a YUN-8 aircraft. The aircraft took off from
Shanhaiguan Airport, the flight altitude kept around 6.8 km, passing
through ocean area (OA), residential area (RA) and mountainous area
(MA), which covers multiple surface types of detection of AMES. In
addition, an AIMMS-20 sensor was equipped to collect meteorological
data, including temperature, humidity and pressure. GPS recorded
latitude, longitude, and altitude information. And a greenhouse gas
analyzer (LGR) recorded CO2 concentrations at the flight altitude,
which was notably that LGR was calibrated before the field campaign,
using the standard concentration of CO2 from 380 to 450 ppm. The data
collected in range of 11:15:39 to 11:39:24 in local time was chosen for
further analysis.

The detailed parameters of airborne CO2-IPDA lidar system are
shown in Table 1, on-line and off-line wavelength pulse would be
formed through OPO laser unit with high stability. During the flight,
the reflected signal from hard target through InGaAs photodiode (PD)
detects to generate voltage signal, then, the light length (𝐿𝑠) could be
calculated by the speed of light and the propagation time of pulses.
The difference between the GPS altitude and the ground altitude is
used as the flight height (𝐿𝑓 ) above ground level. The difference (d
= 𝐿𝑠 − 𝐿𝑓 ) between the light length and the flight height work as a
judgment. When 𝑑 is larger than 2000 m, it is considered as potential
of the existence of clouds during the detected path, color CMOS camera
equipped by YUN-8 aircraft could help us to determine the clouds’
existence. Although we could retrieve the CO2 concentration above
and below clouds by the presented method of Shi et al. (2021a), it
8

Fig. 12. The 10 pressure levels over three areas are given by 𝑝𝑖. 𝑢𝑖 is a corresponding
CO2 VMR. The 𝑝1 and 𝑝𝑠 line represent the flight altitude and ground elevation.

was special cases in future measurements of AEMS. Therefore, the data
for the presence of clouds are removed and not considered in this
section. In addition, data with roll angle greater than 2 degrees were
also excluded. The signals whose 𝑑 is less than 50 m is selected to
the validation experiment. DAOD was retrieved uses the integration
method of the intensity of the pulse-echo signal, calculated by Eq. (1).
Ideally, CO2 distribution above ocean surface is stable, hence, the
relative error (RE) of IPDA lidar system in this campaign is defined
based on 600 pulses above ocean. See formula

𝑅𝐸 =

√

1
𝑁

∑𝑁
𝑖=1(𝐷𝐴𝑂𝐷𝑖 −𝐷𝐴𝑂𝐷)

𝐷𝐴𝑂𝐷
, (17)

where 𝐷𝐴𝑂𝐷𝑖(𝑖 = 1, 2, 3...600) is the DAOD value calculated from
the 𝑖th 𝜆𝑜𝑛 and 𝜆𝑜𝑓𝑓 pulse pairs 𝐷𝐴𝑂𝐷 is the average DAOD of se-
lected 600 pulse pairs. We divide the atmosphere under the flight
altitude into 10 layers with equal pressure, as shown in Fig. 12. The
temperature, pressure and specific humidity at different altitudes are
extracted from European Centre for Medium-Range Weather Forecast-
ing (ECWMF) model forecast fields, which is used for ACOS CO2
retrieval algorithm (O’Dell et al., 2012). The results of interpolation
are shown in Fig. 13. The a priori CO2 profile is provided by Carbon
Tracker model, which is used for GFIT3 retrieval algorithm (Zeng et al.,
2021). Similarly, vertical and horizontal correlations are applied in
this section. The difference is that the airborne adjacent pulses have
a shorter distance in space compared to the long distance between
the footprint of the satellite. The error correlation is stronger for the
concentrations of airborne-based adjacent detections. Thus, a larger
horizontal correlation length was used in the retrieval of the airborne
data. In addition, all soundings use the same a priori profile. And
different soundings are considered to be uncorrelated with each other.
We obtained the instrument noise by solving the standard deviation of
a small piece of DAOD.

To reduce the computational cost of solving the inverse, we retrieve
every 500 soundings as a group. A typical DOF for a group retrieval is
172.8. Fig. 14 demonstrates three typical retrievals over OA, RA and
MA. Based on the structure of prior error covariance and observations,
vertical information is revealed in principle. The profile over residential
area is enhanced near surface due to human activities. In contrast, near-
surface concentrations over OA and MA show a decrease compared to
the a priori profile due to oceanic and ecological carbon sinks. And the
reduction decreases with increasing height.

Figs. 15 and 16 shows the retrieved 𝑋CO2
variations in spatial and

temporal terms. First, it is quite intuitive to see that the residential
area has significantly higher 𝑋CO2

than the other two. This is consistent
with the past knowledge that plants and oceans (Shi et al., 2021a) are
considered as the main natural carbon sinks and cities as the main
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Fig. 13. The interpolated profiles of temperature, specific humidity from ECWMF
dataset.

Fig. 14. The difference between posterior and the prior profile over ocean area (OA),
residential area (RA) and mountainous area (MA).

anthropogenic carbon sources. In addition, Fig. 16 shows the trend of
𝑋CO2

measured by the IPDA lidar system and the trend of the in-situ
measurement instrument. It is worth noting that the 𝑋CO2

measured
by the IPDA lidar system is a column-averaged concentration, which
is different from the concentration measured by the in-situ instrument
at aircraft altitude. Therefore, it is not reasonable to directly compare
these two measurements.

The large fluctuations of the initial DAOD will result in large
fluctuations of IWF-𝑋CO2

. Zhu et al. (2020) and Xiang et al. (2021)
adapted averaging approach to eliminate large fluctuations. Table 3
shows the comparison of the results between this work and Xiang et al.’
work. Although the averaging approach is a fast and effective way
to eliminate large fluctuations, this is based on the assumption that
the concentrations are the same. When there is spatial variation in
concentration, the averaging approach is hard to interpret. Therefore,
based on the spatial correlation of the concentration, the preliminary
results obtained by the OE algorithm coupled with spatial correlation
not only have small standard deviation, but also represent well the
gradients in the three regions. The mean value based on this work of
the 𝑋𝑝

CO2
over residential area is about 6 ppm higher than that over

the other two regions. Due to the low reflectivity of the ocean surface,
lidar obtains very weak echo signals in marine areas. The weak echo
signal received over the ocean causes large standard deviation (𝜎) in
the raw signal of DAOD and large fluctuations of 𝑋𝑝

CO2
. Using this

relative change in concentration, the pressure weighting function and
the averaging kernel matrix, it is sufficient to perform the top-down
constraints on the carbon flux.
9

m

Fig. 15. Retrieved 𝑋CO2
spatial variations. The blue, red, and green rectangular

boxes represent ocean area (OA), residential area (RA), and mountainous area (MA),
respectively.

Fig. 16. Temporal variations of prior 𝑋CO2
, posterior 𝑋CO2

and in-situ CO2 over ocean
area (OA), residential area (RA), and mountainous area (MA). The posterior 𝑋CO2

is
smoothed with a 1000-point moving average for visual clarity.

Table 3
Comparison of retrieval results based on this work and conventional algorithm (Xiang
et al., 2021). The Results of Xiang et al. are smoothed with a 600-point moving
average.

Location Mean Standard deviation

This work Xiang et al. This work Xiang et al.

Ocean area (OA) 417.88 411.05 3.7 9.76
Residential area (RA) 423.32 417.77 1.73 3.94
Mountainous area (MA) 417.32 410.72 2.42 3.88

. Discussion

.1. Bias in retrieved 𝑋CO2

All a priori configurations (e.g., atmospheric state and spectral pa-
ameters) may introduce errors into the retrieval. Consistent errors that
annot be reduced by averaging are categorized as ‘‘bias’’ errors. Wunch
t al. (2017) pointed out that some biases due to systematic error can be
emoved by bias correction and residual biases that may be associated
ith surface properties but aerosol scattering still exist on a local scale,
y comparison with TCCON’s 𝑋CO2

measurements. Fortunately, the
ixed biases of 𝑋CO2

will keep the concentration gradient unchanged
nd therefore will not affect the flux inversion (Ye et al., 2020).

Here we focus on the bias that the a priori CO2 distribution may
ntroduce into the results. Generally, we expect more independent
nformation from the measurements by using as vague a priori infor-
ation as possible. However, the informative prior is necessary for
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the ill-posed problem without dimension reduction. Unlike the least
squares approach, Bayes’ law obtains the posterior not only from the
measurement but also from the prior. The a priori bias-prone CO2
profile may introduce unexpected bias into the a posteriori 𝑋CO2

.
The effect of these biases on 𝑋CO2

enhancement could be eliminated
with the subtraction of the biased background 𝑋CO2

in a small spatial
area(∼200–300 km). Therefore, the determination of the background
concentration plays an particularly important role in flux inversion.
Observation-based methods (e.g., statistical or Lagrangian methods Pei
et al., 2022) are suggested to generate the biased background 𝑋CO2

to
get the unbiased concentration enhancement.

6.2. Active–passive collaborative retrieval

The active IPDA lidar system has two distinct advantages. First, it
is not affected by aerosols and thin clouds, and it can be eliminated
by differential. Compared with the complex radiative transfer model of
passive remote sensing, the forward model based on IPDA lidar system
facilitates us to solve the state vector. Although the ACOS algorithm
using full physics can give a rough estimate of AOD when the AOD
is less than 0.3. Active IPDA lidar system can undoubtedly improve
the data availability substantially. Second, passive remote sensing that
relies on reflected sunlight cannot provide observations at night, and
past space-based means cannot capture the day–night variation of
CO2 concentration, which is particularly important for carbon sink
estimation (Kawa et al., 2010). In addition, DQ1-like satellites can also
be used for inversion of fluxes (Wang et al., 2014) and estimation
of point source emissions (Shi et al., 2021a). The error in 𝑋CO2

is
significantly correlated with the error in surface pressure. The typical
surface pressure error of ECMWF is 2–3 hPa, which may be greater
at high latitudes and high terrain areas. The advantage of passive
remote sensing satellites (e.g., OCO-2) is that its Oxygen A-band is
dedicated to the precise retrieval of surface pressure. Salstein et al.
(2008). Furthermore, passive spectrometer offers the advantages of
wide coverage and low cost. Daqi-2(DQ-2), equipped with an CO2-
IPDA lidar system and a passive spectrometer (Cai et al., 2022), is
scheduled to be launched in 2025. Its products are expected to have
the advantages of both passive and active remote sensing.

6.3. Multi-wavelength lidar measurements

The 𝑋CO2
retrieval algorithm described in this study is used for

the online and offline dual-wavelength IPDA lidar system. More wave-
lengths allow us to solve for more parameters (e.g., the Doppler shift
and water vapor content) in addition to CO2 and help to reduce bias in
the 𝑋CO2

retrieval. Although more wavelengths mean lower SNR due to
the total average laser output power is fixed. The available wavelengths
need to be chosen rationally based on the absorption lines of CO2 and
other interfering gases (Shi et al., 2023). For example, the laser should
not be placed at a wavelength where the CO2 absorption is so high
that the received signal is too low for the retrieval (Shi et al., 2020).
When the number of laser wavelengths is greater than the number of
unknowns to be solved, least squares method (non-Bayesian) could be
used without a priori information.

7. Conclusion

The retrieval algorithm proposed in this study for double-pulse IPDA
lidar measurements is based on a Bayesian framework to estimate the
𝑋CO2

by solving a constrained least squares problem. Regularization
terms related to vertical and horizontal correlation are used to impose
smoothing. OSSEs show that structure of prior error covariance play
an important role in vertical distribution from the observations. The
employment of vertical correlation is beneficial for the optimization
of posterior profile and uncertainty reduction over the whole column.
10
Fig. 17. Two points in a two-dimensional space. i and j denote layers i and j in the
vertical direction. m and n denote columns m and n in the horizontal direction.

Horizontal correlation can be used to solve the problem of large pos-
terior concentration fluctuations on the flight path, which is preferable
especially when fewer effective detections are not enough to use the
averaging method.

These techniques were applied to an airborne experiment, the pre-
experiment of AEMS, near Bohai Bay, China, in March 2019. The echo
signals were successfully received by the airborne-based IPDA lidar sys-
tem. Compared with the conventional differential absorption ratioing
approach, the a posteriori CO2 column-averaged mixing ratio obtained
in this study is able to detect concentration gradients without large
fluctuations. Enhanced CO2 concentrations of 6 ppm approximately are
observed over the residential area.

Our future work will apply this retrieval algorithm to ACDL onboard
AEMS and compare the retrievals with in situ measurements, such as
TCCON or other passive remote sensing satellites.
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Appendix A. Error correlation coefficient

As shown in Fig. 17, the error correlation coefficient between point
1 and point 2 can be calculated by Eq. (18),

𝜌(1,2) = 𝜌vertical
𝑖𝑗 ⋅ 𝜌horizontal

𝑚𝑛 (18)

where 𝜌vertical
𝑖𝑗 the vertical correlation between the 𝑖th row and the 𝑗th

row and 𝜌horizontal
𝑚𝑛 the horizontal correlation between 𝑚th column and

𝑛th column. The horizontal and vertical correlation can be expressed
based on exponential variogram:

𝜌𝑖,𝑗 = exp
(

−
𝑑𝑖,𝑗
𝐿

)

(19)

where 𝑑𝑖,𝑗 is the distance between point 𝑖 and point 𝑗, and 𝐿 is the
correlation length.
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Appendix B. The prior error covariance matrix

Here we give the prior error covariance matrix mathematically.
Eqs. (20) and (21) correspond to (a) and (b) of Fig. 9, respectively.

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑃 (1,5) 𝑃 (2,5) 𝑃 (3,5) 𝑃 (4,5) 𝑆𝑎
𝑃 (1,4) 𝑃 (2,4) 𝑃 (3,4) 𝑆𝑎 𝑃 (5,4)

𝑃 (1,3) 𝑃 (2,3) 𝑆𝑎 𝑃 (4,3) 𝑃 (5,3)

𝑃 (1,2) 𝑆𝑎 𝑃 (3,2) 𝑃 (4,2) 𝑃 (5,2)

𝑆𝑎 𝑃 (2,1) 𝑃 (3,1) 𝑃 (4,1) 𝑃 (5,1)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(20)

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 𝑆𝑎
0 0 0 𝑆𝑎 0
0 0 𝑆𝑎 0 0
0 𝑆𝑎 0 0 0
𝑆𝑎 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(21)

where 𝑆𝑎(20 × 20) is the error covariance matrix of a single sounding,
and 𝑃 (𝑥,𝑦)(20 × 20) is the error covariance matrix of the xth sounding
and yth sounding. The 𝑖th row and 𝑗th column of 𝑆𝑎(𝑖,𝑗) is 𝜎𝑖 ⋅𝜌𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙𝑖𝑗 ⋅𝜎𝑗 .
The 𝑖th row and 𝑗th column of 𝑃 (𝑚,𝑛)

(𝑖,𝑗) is 𝜎𝑖 ⋅ 𝜌𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙𝑖𝑗 ⋅ 𝜌ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙𝑚𝑛 ⋅ 𝜎𝑗 , where
𝜌𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙𝑖𝑗 the vertical correlation efficient between xth and yth layers and
𝜌ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙𝑚𝑛 is the horizontal correlation efficient between 𝑚th and 𝑛th
oundings.

eferences

nderson, G.P., Clough, S.A., Kneizys, F., Chetwynd, J.H., Shettle, E.P., 1986. AFGL At-
mospheric Constituent Profiles (0.120 km). Technical Report, Air Force Geophysics
Lab Hanscom AFB MA.

aker, D.F., Bell, E., Davis, K.J., Campbell, J.F., Lin, B., Dobler, J., 2022. A new expo-
nentially decaying error correlation model for assimilating OCO-2 column-average
CO 2 data using a length scale computed from airborne lidar measurements. Geosci.
Model Dev. 15 (2), 649–668.

owman, K.W., Rodgers, C.D., Kulawik, S.S., Worden, J., Sarkissian, E., Osterman, G.,
Steck, T., Lou, M., Eldering, A., Shephard, M., et al., 2006. Tropospheric emission
spectrometer: Retrieval method and error analysis. IEEE Trans. Geosci. Remote
Sens. 44 (5), 1297–1307.

uendia, E., Tanabe, K., Kranjc, A., Baasansuren, J., Fukuda, M., Ngarize, S., Osako, A.,
Pyrozhenko, Y., Shermanau, P., Federici, S., 2019. Refinement to the 2006
IPCC Guidelines for National Greenhouse Gas Inventories, Vol. 5. IPCC, Geneva,
Switzerland, p. 194.

ai, M., Han, G., Ma, X., Pei, Z., Gong, W., 2022. Active–passive collaborative approach
for XCO 2 retrieval using spaceborne sensors. Opt. Lett. 47 (16), 4211–4214.

ao, X., Zhang, L., Zhang, X., Yang, S., Deng, Z., Zhang, X., Jiang, Y., 2022. Study
on the impact of the Doppler shift for CO2 lidar remote sensing. Remote Sens. 14
(18), 4620.

onnor, B.J., Boesch, H., Toon, G., Sen, B., Miller, C., Crisp, D., 2008. Orbiting
carbon observatory: Inverse method and prospective error analysis. J. Geophys.
Res.: Atmos. 113 (D5).

upuy, E., Morino, I., Deutscher, N.M., Yoshida, Y., Uchino, O., Connor, B.J., De Maz-
ière, M., Griffith, D.W., Hase, F., Heikkinen, P., et al., 2016. Comparison of XH2o
retrieved from GOSAT short-wavelength infrared spectra with observations from
the TCCON network. Remote Sens. 8 (5), 414.

ggleston, H., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., 2006. 2006 IPCC guidelines
for national greenhouse gas inventories.

riffith, D., Jamie, I., Leuning, R., Denmead, T., 2002. Surface fluxes of CO2, CH4,
and N2O at OASIS’95 using tower-based FTIR techniques. Atmos. Environ. 36,
1833–1842.

an, G., Cui, X., Liang, A., Ma, X., Zhang, T., Gong, W., 2017a. A CO 2 profile
retrieving method based on chebyshev fitting for ground-based dial. IEEE Trans.
Geosci. Remote Sens. 55 (11), 6099–6110.

an, G., Ma, X., Liang, A., Zhang, T., Zhao, Y., Zhang, M., Gong, W., 2017b.
Performance evaluation for China’s planned CO2-IPDA. Remote Sens. 9 (8), 768.

an, G., Xu, H., Gong, W., Liu, J., Du, J., Ma, X., Liang, A., 2018. Feasibility study
on measuring atmospheric CO2 in urban areas using spaceborne CO2-IPDA LIDAR.
Remote Sens. 10 (7), 985.

ou, W., Wang, J., Xu, X., Reid, J.S., Han, D., 2016. An algorithm for hyperspectral
remote sensing of aerosols: 1. development of theoretical framework. J. Quant.
Spectrosc. Radiat. Transfer 178, 400–415.

ou, W., Wang, J., Xu, X., Reid, J.S., Janz, S.J., Leitch, J.W., 2020. An algorithm for
hyperspectral remote sensing of aerosols: 3. application to the GEO-TASO data in
KORUS-AQ field campaign. J. Quant. Spectrosc. Radiat. Transfer 253, 107161.

awa, S., Mao, J., Abshire, J., Collatz, G., Sun, X., Weaver, C., 2010. Simulation studies
11

for a space-based CO2 lidar mission. Tellus B 62 (5), 759–769.
Ke, J., Sun, Y., Dong, C., Zhang, X., Wang, Z., Lyu, L., Zhu, W., Ansmann, A., Su, L.,
Bu, L., et al., 2022. Development of China’s first space-borne aerosol-cloud high-
spectral-resolution lidar: retrieval algorithm and airborne demonstration. PhotoniX
3 (1), 17.

Kochanov, R.V., Gordon, I., Rothman, L., Wcisło, P., Hill, C., Wilzewski, J., 2016.
HITRAN application programming interface (HAPI): A comprehensive approach to
working with spectroscopic data. J. Quant. Spectrosc. Radiat. Transfer 177, 15–30.

Kuai, L., Worden, J.R., Li, K.-F., Hulley, G.C., Hopkins, F.M., Miller, C.E., Hook, S.J.,
Duren, R.M., Aubrey, A.D., 2016. Characterization of anthropogenic methane
plumes with the hyperspectral thermal emission spectrometer (HyTES): A retrieval
method and error analysis. Atmos. Meas. Tech. 9 (7), 3165–3173.

Kulawik, S.S., O’Dell, C., Payne, V.H., Kuai, L., Worden, H.M., Biraud, S.C., Sweeney, C.,
Stephens, B., Iraci, L.T., Yates, E.L., et al., 2017. Lower-tropospheric CO 2 from
near-infrared ACOS-GOSAT observations. Atmos. Chem. Phys. 17 (8), 5407–5438.

Kunik, L., Mallia, D.V., Gurney, K.R., Mendoza, D.L., Oda, T., Lin, J.C., 2019. Bayesian
inverse estimation of urban CO2 emissions: Results from a synthetic data simulation
over salt lake city, UT. Elementa: Sci. Anthropocene 7.

Lauvaux, T., Miles, N.L., Deng, A., Richardson, S.J., Cambaliza, M.O., Davis, K.J.,
Gaudet, B., Gurney, K.R., Huang, J., O’Keefe, D., et al., 2016. High-resolution
atmospheric inversion of urban CO2 emissions during the dormant season of
the Indianapolis flux experiment (INFLUX). J. Geophys. Res.: Atmos. 121 (10),
5213–5236.

Li, Z., Hou, W., Hong, J., Fan, C., Wei, Y., Liu, Z., Lei, X., Qiao, Y., Hasekamp, O.P.,
Fu, G., et al., 2022a. The polarization crossfire (PCF) sensor suite focusing on
satellite remote sensing of fine particulate matter PM2. 5 from space. J. Quant.
Spectrosc. Radiat. Transfer 286, 108217.

Li, Z., Hou, W., Hong, J., Zheng, F., Luo, D., Wang, J., Gu, X., Qiao, Y., 2018. Di-
rectional polarimetric camera (DPC): Monitoring aerosol spectral optical properties
over land from satellite observation. J. Quant. Spectrosc. Radiat. Transfer 218,
21–37.

Li, Z., Xie, Y., Hou, W., Liu, Z., Bai, Z., Hong, J., Ma, Y., Huang, H., Lei, X.,
Sun, X., et al., 2022b. In-orbit test of the polarized scanning atmospheric corrector
(PSAC) onboard Chinese environmental protection and disaster monitoring satellite
constellation HJ-2 A/B. IEEE Trans. Geosci. Remote Sens. 60, 1–17.

Lin, J., Gerbig, C., Wofsy, S., Andrews, A., Daube, B., Davis, K., Grainger, C., 2003. A
near-field tool for simulating the upstream influence of atmospheric observations:
The stochastic time-inverted Lagrangian transport (STILT) model. J. Geophys. Res.:
Atmos. 108 (D16).

Liu, B., Ma, X., Guo, J., Li, H., Jin, S., Ma, Y., Gong, W., 2023. Estimating hub-height
wind speed based on a machine learning algorithm: implications for wind energy
assessment. Atmos. Chem. Phys. 23 (5), 3181–3193.

Meng, G., Wen, Y., Zhang, M., Gu, Y., Xiong, W., Wang, Z., Niu, S., 2022. The status
and development proposal of carbon sources and sinks monitoring satellite system.
Carbon Neutrality 1 (1), 32.

O’Dell, C., Connor, B., Bösch, H., O’Brien, D., Frankenberg, C., Castano, R., Christi, M.,
Eldering, D., Fisher, B., Gunson, M., et al., 2012. The ACOS CO 2 retrieval
algorithm–part 1: Description and validation against synthetic observations. Atmos.
Meas. Tech. 5 (1), 99–121.

Pei, Z., Han, G., Ma, X., Shi, T., Gong, W., 2022. A method for estimating the
background column concentration of CO2 using the lagrangian approach. IEEE
Trans. Geosci. Remote Sens. http://dx.doi.org/10.1109/TGRS.2022.3176134.

Pei, Z., Han, G., Mao, H., Chen, C., Shi, T., Yang, K., Ma, X., Gong, W., 2023. Improving
quantification of methane point source emissions from imaging spectroscopy.
Remote Sens. Environ. 295, 113652.

Perugini, L., Pellis, G., Grassi, G., Ciais, P., Dolman, H., House, J.I., Peters, G.P.,
Smith, P., Günther, D., Peylin, P., 2021. Emerging reporting and verification
needs under the Paris agreement: How can the research community effectively
contribute? Environ. Sci. Policy 122, 116–126.

Ramanathan, A.K., Nguyen, H.M., Sun, X., Mao, J., Abshire, J.B., Hobbs, J.M.,
Braverman, A.J., 2018. A singular value decomposition framework for retrievals
with vertical distribution information from greenhouse gas column absorption
spectroscopy measurements. Atmos. Meas. Tech. 11 (8), 4909–4928.

Refaat, T.F., Singh, U.N., Yu, J., Petros, M., Remus, R., Ismail, S., 2016. Double-pulse 2-
𝜇m integrated path differential absorption lidar airborne validation for atmospheric
carbon dioxide measurement. Appl. Opt. 55 (15), 4232–4246.

Rodgers, C.D., 2000. Inverse Methods for Atmospheric Sounding: Theory and Practice,
Vol. 2. World scientific.

Rothman, L.S., Gordon, I.E., Barbe, A., Benner, D.C., Bernath, P.F., Birk, M., Boudon, V.,
Brown, L.R., Campargue, A., Champion, J.-P., et al., 2009. The HITRAN 2008
molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer 110 (9–10),
533–572.

Salstein, D.A., Ponte, R.M., Cady-Pereira, K., 2008. Uncertainties in atmospheric surface
pressure fields from global analyses. J. Geophys. Res.: Atmos. 113 (D14).

Shen, L., Gautam, R., Omara, M., Zavala-Araiza, D., Maasakkers, J., Scarpelli, T.,
Lorente, A., Lyon, D., Sheng, J., Varon, D., et al., 2022. Satellite quantification of oil
and natural gas methane emissions in the US and Canada including contributions
from individual basins. Atmos. Chem. Phys. Discuss. 1–22.

Shi, T., Han, G., Ma, X., Gong, W., Chen, W., Liu, J., Zhang, X., Pei, Z., Gou, H., Bu, L.,
2021a. Quantifying CO2 uptakes over oceans using LIDAR: A tentative experiment
in Bohai bay. Geophys. Res. Lett. 48 (9), e2020GL091160.

http://refhub.elsevier.com/S1352-2310(23)00359-X/sb1
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb1
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb1
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb1
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb1
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb2
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb2
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb2
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb2
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb2
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb2
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb2
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb3
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb3
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb3
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb3
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb3
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb3
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb3
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb4
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb4
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb4
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb4
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb4
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb4
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb4
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb5
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb5
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb5
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb6
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb6
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb6
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb6
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb6
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb7
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb7
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb7
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb7
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb7
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb8
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb8
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb8
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb8
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb8
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb8
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb8
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb9
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb9
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb9
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb10
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb10
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb10
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb10
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb10
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb11
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb11
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb11
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb11
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb11
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb12
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb12
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb12
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb13
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb13
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb13
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb13
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb13
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb14
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb14
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb14
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb14
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb14
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb15
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb15
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb15
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb15
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb15
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb16
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb16
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb16
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb17
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb17
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb17
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb17
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb17
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb17
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb17
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb18
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb18
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb18
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb18
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb18
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb19
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb19
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb19
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb19
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb19
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb19
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb19
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb20
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb20
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb20
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb20
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb20
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb21
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb21
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb21
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb21
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb21
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb22
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb22
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb22
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb22
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb22
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb22
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb22
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb22
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb22
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb23
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb23
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb23
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb23
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb23
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb23
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb23
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb24
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb24
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb24
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb24
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb24
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb24
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb24
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb25
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb25
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb25
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb25
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb25
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb25
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb25
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb26
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb26
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb26
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb26
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb26
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb26
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb26
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb27
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb27
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb27
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb27
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb27
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb28
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb28
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb28
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb28
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb28
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb29
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb29
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb29
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb29
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb29
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb29
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb29
http://dx.doi.org/10.1109/TGRS.2022.3176134
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb31
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb31
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb31
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb31
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb31
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb32
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb32
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb32
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb32
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb32
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb32
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb32
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb33
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb33
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb33
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb33
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb33
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb33
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb33
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb34
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb34
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb34
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb34
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb34
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb35
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb35
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb35
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb36
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb36
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb36
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb36
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb36
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb36
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb36
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb37
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb37
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb37
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb38
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb38
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb38
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb38
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb38
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb38
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb38
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb39
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb39
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb39
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb39
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb39


Atmospheric Environment 309 (2023) 119933Z. Pei et al.
Shi, T., Han, G., Ma, X., Mao, H., Chen, C., Han, Z., Pei, Z., Zhang, H., Li, S., Gong, W.,
2023. Quantifying factory-scale co2/ch4 emission based on mobile measurements
and emission-partition model: cases in china. Environmental Research Letters 18
(3), 034028.

Shi, T., Han, G., Ma, X., Zhang, M., Pei, Z., Xu, H., Qiu, R., Zhang, H., Gong, W., 2020.
An inversion method for estimating strong point carbon dioxide emissions using a
differential absorption lidar. J. Clean. Prod. 271, 122434.

Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Liu, Z., Berner, J., Wang, W.,
Powers, J.G., Duda, M.G., Barker, D.M., et al., 2019. A Description of the Advanced
Research WRF Model Version 4, Vol. 145. National Center for Atmospheric
Research, Boulder, CO, USA, p. 145.

Staebell, C., Sun, K., Samra, J., Franklin, J., Chan Miller, C., Liu, X., Conway, E.,
Chance, K., Milligan, S., Wofsy, S., 2021. Spectral calibration of the methaneair
instrument. Atmos. Meas. Tech. 14 (5), 3737–3753.

Sun, X., Abshire, J.B., Ramanathan, A., Kawa, S.R., Mao, J., 2021. Retrieval algo-
rithm for the column CO 2 mixing ratio from pulsed multi-wavelength lidar
measurements. Atmos. Meas. Tech. 14 (5), 3909–3922.

Villalobos, Y., Rayner, P., Thomas, S., Silver, J., 2020. The potential of orbiting carbon
observatory-2 data to reduce the uncertainties in CO 2 surface fluxes over Australia
using a variational assimilation scheme. Atmos. Chem. Phys. 20 (14), 8473–8500.

Wang, J., Kawa, S., Eluszkiewicz, J., Baker, D., Mountain, M., Henderson, J.,
Nehrkorn, T., Zaccheo, T., 2014. A regional CO 2 observing system simula-
tion experiment for the ascends satellite mission. Atmos. Chem. Phys. 14 (23),
12897–12914.

Wofsy, S.C., Hamburg, S., 2019. Methanesat-a new observing platform for high
resolution measurements of methane and carbon dioxide. In: AGU Fall Meeting
Abstracts, Vol. 2019. pp. A53F–02.

Wu, D., Lin, J.C., Fasoli, B., Oda, T., Ye, X., Lauvaux, T., Yang, E.G., Kort, E.A., 2018.
A Lagrangian approach towards extracting signals of urban CO 2 emissions from
satellite observations of atmospheric column CO 2 (XCO 2): X-stochastic time-
inverted Lagrangian transport model (‘‘x-STILT v1’’). Geosci. Model Dev. 11 (12),
4843–4871.

Wunch, D., Toon, G.C., Blavier, J.-F.L., Washenfelder, R.A., Notholt, J., Connor, B.J.,
Griffith, D.W., Sherlock, V., Wennberg, P.O., 2011. The total carbon column
observing network. Phil. Trans. R. Soc. A 369 (1943), 2087–2112.

Wunch, D., Toon, G.C., Wennberg, P.O., Wofsy, S.C., Stephens, B.B., Fischer, M.L.,
Uchino, O., Abshire, J.B., Bernath, P., Biraud, S.C., et al., 2010. Calibration of the
total carbon column observing network using aircraft profile data. Atmos. Meas.
Tech. 3 (5), 1351–1362.
12
Wunch, D., Wennberg, P.O., Osterman, G., Fisher, B., Naylor, B., Roehl, C.M., O’Dell, C.,
Mandrake, L., Viatte, C., Kiel, M., et al., 2017. Comparisons of the orbiting carbon
observatory-2 (OCO-2) x CO 2 measurements with TCCON. Atmos. Meas. Tech. 10
(6), 2209–2238.

Xiang, C., Ma, X., Zhang, X., Han, G., Zhang, W., Chen, B., Liang, A., Gong, W., 2021.
Design of inversion procedure for the airborne CO 2-IPDA LIDAR: A preliminary
study. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 14, 11840–11852.

Yang, D., Liu, Y., Cai, Z., Chen, X., Yao, L., Lu, D., 2018. First global carbon dioxide
maps produced from TanSat measurements.

Yang, S., Yang, J., Shi, S., Song, S., Luo, Y., Du, L., 2023. The rising impact of
urbanization-caused CO2 emissions on terrestrial vegetation. Ecol. Indic. 148,
110079.

Ye, X., Lauvaux, T., Kort, E.A., Oda, T., Feng, S., Lin, J.C., Yang, E.G., Wu, D., 2020.
Constraining fossil fuel CO2 emissions from urban area using OCO-2 observations
of total column CO2. J. Geophys. Res.: Atmos. 125 (8), e2019JD030528.

Yokota, T., Yoshida, Y., Eguchi, N., Ota, Y., Tanaka, T., Watanabe, H., Maksyu-
tov, S., 2009. Global concentrations of CO2 and CH4 retrieved from GOSAT: First
preliminary results. Sola 5, 160–163.

Zeng, Z.-C., Natraj, V., Xu, F., Chen, S., Gong, F.-Y., Pongetti, T.J., Sung, K., Toon, G.,
Sander, S.P., Yung, Y.L., 2021. GFIT3: a full physics retrieval algorithm for remote
sensing of greenhouse gases in the presence of aerosols. Atmos. Meas. Tech. 14
(10), 6483–6507.

Zhang, Y., Jacob, D.J., Lu, X., Maasakkers, J.D., Scarpelli, T.R., Sheng, J.-X., Shen, L.,
Qu, Z., Sulprizio, M.P., Chang, J., et al., 2021. Attribution of the accelerating
increase in atmospheric methane during 2010–2018 by inverse analysis of GOSAT
observations. Atmos. Chem. Phys. 21 (5), 3643–3666.

Zhang, Y., Wang, W., He, J., Jin, Z., Wang, N., 2023. Spatially continuous mapping of
hourly ground ozone levels assisted by Himawari-8 short wave radiation products.
GISci. Remote Sens. 60 (1), 2174280.

Zhang, X., Wang, F., Wang, W., Huang, F., Chen, B., Gao, L., Wang, S., Yan, H., Ye, H.,
Si, F., et al., 2020. The development and application of satellite remote sensing for
atmospheric compositions in China. Atmos. Res. 245, 105056.

Zhou, M., Langerock, B., Sha, M.K., Kumps, N., Hermans, C., Petri, C., Warneke, T.,
Chen, H., Metzger, J.-M., Kivi, R., et al., 2019. Retrieval of atmospheric CH 4
vertical information from ground-based FTS near-infrared spectra. Atmos. Meas.
Tech. 12 (11), 6125–6141.

Zhu, Y., Yang, J., Chen, X., Zhu, X., Zhang, J., Li, S., Sun, Y., Hou, X., Bi, D., Bu, L.,
et al., 2020. Airborne validation experiment of 1.57-𝜇m double-pulse IPDA LIDAR
for atmospheric carbon dioxide measurement. Remote Sens. 12 (12), 1999.

http://refhub.elsevier.com/S1352-2310(23)00359-X/sb40
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb40
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb40
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb40
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb40
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb40
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb40
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb41
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb41
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb41
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb41
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb41
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb42
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb42
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb42
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb42
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb42
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb42
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb42
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb43
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb43
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb43
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb43
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb43
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb44
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb44
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb44
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb44
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb44
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb45
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb45
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb45
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb45
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb45
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb46
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb46
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb46
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb46
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb46
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb46
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb46
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb47
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb47
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb47
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb47
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb47
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb48
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb48
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb48
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb48
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb48
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb48
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb48
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb48
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb48
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb49
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb49
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb49
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb49
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb49
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb50
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb50
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb50
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb50
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb50
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb50
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb50
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb51
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb51
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb51
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb51
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb51
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb51
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb51
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb52
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb52
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb52
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb52
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb52
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb53
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb53
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb53
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb54
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb54
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb54
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb54
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb54
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb55
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb55
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb55
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb55
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb55
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb56
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb56
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb56
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb56
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb56
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb57
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb57
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb57
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb57
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb57
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb57
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb57
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb58
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb58
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb58
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb58
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb58
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb58
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb58
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb59
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb59
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb59
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb59
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb59
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb60
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb60
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb60
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb60
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb60
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb61
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb61
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb61
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb61
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb61
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb61
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb61
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb62
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb62
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb62
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb62
http://refhub.elsevier.com/S1352-2310(23)00359-X/sb62

	A XCO2 Retrieval Algorithm Coupled Spatial Correlation for the Aerosol and Carbon Detection Lidar
	Introduction
	Experimental setup
	Method
	Forward model
	Retrieval strategy
	Error analysis
	A Priori Constraints
	WRF-STILT

	OSSEs
	Single sounding
	Multiple soundings

	Airborne experiment
	Discussion
	Bias in retrieved XCO2
	Active–passive collaborative retrieval
	Multi-wavelength lidar measurements

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Appendix A. Error correlation coefficient
	Appendix B. The prior error covariance matrix
	References


