
1. Introduction
Current observations show that the growth of the atmospheric CO2 concentration is evidently lower than 
expected, suggesting that anthropogenic carbon emissions have been offset by some unclear carbon sinks. 
Oceans and terrestrial ecosystems are supposed to be responsible for the missing carbon sinks (Sabine 
et al., 2004; Takahashi et al., 2009). Scientists have utilized varieties of means to explore carbon fluxes of 
terrestrial ecosystems quantitatively in the recent decades, trying to narrow gaps between observations and 
estimates of models (Eldering et al., 2017; Watson et al., 2009). Comparing with progresses in estimating 
carbon fluxes of terrestrial ecosystems, we still have some barriers to a better understanding on carbon 
fluxes of oceans. We do know oceans offset anthropogenic carbon emissions but there are lacks of quan-
titative and accurate estimates of CO2 fluxes over oceans. Therefore, we don't have insight knowledge on 
distributions and dynamics of ocean carbon uptakes. Some pieces of evidence suggest that there may be a 
trigger point beyond which CO2 uptakes of oceans would rapidly decline or even shift to a net CO2 emission 
(DeVries et al., 2019). Therefore, designing more measurement methods to estimate ocean CO2 fluxes more 
reliably and efficiently is of great importance.

The difference of CO2 partial pressures in seawater (p(CO2)sw) and overlying air (p(CO2)air) would cause a 
net transfer of CO2 flux between ocean and atmosphere (Wanninkhof, 2014). Experiments for measuring 
(p(CO2)sw) during ship tracks have been implemented in different regions of the global sea, which help to 
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promote our understanding on ocean CO2 flux (Bushinsky et al., 2019; Lanso et al., 2015). Those works 
proposed reliable models to calculate p(CO2)sw using easily accessible in-situ measurements, such as the sea 
temperature, the chlorophyll and the salinity (Bai et al., 2015). However, there is a lack of means to meas-
ure p(CO2)sw with a fine spatial resolution globally, resulting in ineffectively monitoring of ocean uptakes. 
Moreover, these models would not be appropriate to study monthly or seasonal characteristics of  p(CO2)sw,  
as these field data are normally collected over a certain period by sensors equipped on ships. Therefore, 
there is an urgent need to explore the feasibility of measuring sea-air CO2 gradients using remotely sensed 
data from spaceborne sensors. IPDA, an abbreviation for integrated path differential absorption, LiDAR can 
measure column-weighted dry-air mixing ratio of CO2 (abbreviated as XCO2 hereafter) with high accuracy 
and sensitivity. Both the United States and China have scheduled to launch satellites with IPDA LIDAR 
onboard shortly. Flight tests carried out by researchers of the United States and China demonstrated results 
with a precision of ∼1 ppm can be achieved by airborne CO2-IPDA LIDAR under various circumstances 
(Abshire et al., 2014; Zhu et al., 2020). Those results exhibited reliable performances of the forthcoming 
spaceborne CO2-IPDA LIDAR, which would serve as novel means to monitor the carbon cycle and provide 
us valuable opportunities to quantitatively estimate CO2 fluxes over oceans. Hence, it is now of great sig-
nificance to explore the feasibility of measuring CO2 fluxes using observations from a CO2-IPDA LIDAR.

In this study, we evaluated the CO2 exchange rate of the ocean using observations acquired during a flight 
test carried out in China on March 14, 2019. Firstly, an evident horizontal gradient of XCO2 has been wit-
nessed, exhibiting a lower XCO2 over the ocean. Then, XCO2 in the atmospheric boundary layer (ABL) and 
the free troposphere (FT) have been retrieved using the cloud slicing method (Mao et al., 2018; Ramanathan 
et al., 2015) to reflect the vertical gradients of atmospheric concentrations of CO2. On that basis, we esti-
mated the CO2 exchange rate of the ocean using the concept of equilibrium of ABL (Betts & Ridgway, 1989; 
Gibert et al., 2007).

2. Instrument Description and Methods
2.1. Airborne ACDL LIDAR System

An airborne Atmospheric Carbon Dioxide LIDAR (ACDL), which consists of a CO2-IPDA LIDAR, 1064 nm 
Mie LIDAR and 532 nm Mie LIDAR (details are given as Figure S1) (Wang et al., 2020; Zhu et al., 2020). In 
this study, we mainly used the data collected by the first two LIDARs.

2.2. Retrieving Method of XCO2
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XCO2 abbreviates for the column-weighted dry-air mixing ratio of CO2. Pon and Poff represent the received 
powers of λon and λoff pulses. 0

onP  and 0
offP  represent the transmitting powers of λon and λoff pulses. IWF is the 

integrated weighting function of CO2, σon and σoff represent absorption cross-section of online and offline 
wavelengths (Shi et al., 2020), RA is the altitude of the airborne platform, and RG is the altitude of the hard 
target above sea level. P(r) and T(r) are atmospheric profiles of the pressure and the temperature, NA is the 
Avogadro constant, R is gas constant, XH2O represents the column-averaged dry-air mixing ratio of water 
vapor (Shi et al., 2020; Zhu et al., 2020). All spectroscopic parameter regarding calculations of the IWF are 
according to the HITRAN2012 database (https://hitran.org/) (Rothman et al., 2013). The meteorological pa-
rameters used in this research were acquired by ERA5 reanalysis database, including pressure, temperature 
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and water vapor profile at different altitudes (Hersbach et al., 2020). In this study, the averaging time for 
XCO2 retrievals is 1 s.

3. Result
3.1. Flight Campaign

We utilized data collected via a flight test on March 14, 2019 to retrieve XCO2 over different land covers, 
including the ocean, the urban area and the mountainous area. Because this is the first-time developers 
carried out a flight test for the ACDL, there were some problems with the commissioning of the LIDAR 
system during the flight, resulting in a large proportion of unavailable data. A small fraction of data was 
used in this work and the corresponding flight track was shown in Figure 1a. The flight altitude was about 
6.8 km (Figure 1b). In this study, we mainly discussed the ability of the IPDA LIDAR to estimate the CO2 
flux in Bohai Bay.

3.2. Validation of the Characteristic of CO2 Diffusion over the Ocean

The measured atmospheric CO2 concentration is a combination of regional backgrounds and local en-
hancements due to carbon sources and sinks. Signatures of surface CO2 fluxes are diffusing through both 
vertical mixing and horizontal transportation. Hence, a carbon source or sink would result in a gradient of 
atmospheric CO2 concentration in both the vertical and horizontal directions. In turn, the CO2 flux could 
gradually be reversed by using CO2 concentration gradients and a rational transport model. Therefore, the 
key purpose of this experiment is to figure out whether XCO2 observations obtained by the IPDA-LIDAR 
can exhibit vertical and horizontal gradients of CO2 concentrations.

3.2.1. The Horizontal Gradient of XCO2

The XCO2 retrievals obtained by the IPDA LIDAR and point mixing ratio of CO2 obtained by the in-situ 
measuring equipment were demonstrated in Figure 2a. The blank regions are caused by the loss of the echo 
signal due to the large roll angle of the airplane as it turns, or the received signals are saturated. Figure 2a 
exhibits explicitly horizontal gradients of column and point CO2 mixing ratios. Given that the downtown of 
Qinhuangdao locates in the plain area shown in Figure 2a, there must be anthropogenic carbon emissions 
in that region, especially in March when there is public heating service consuming large amounts of coals. 
Figure 2a shows that XCO2 retrievals over the mountains area are lower than those over the urban area but 
are larger than those over the ocean, exhibiting evident XCO2 gradients among different surfaces. The XCO2 
retrievals varied from 406.2 to 441.3 ppm during the flight track.
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Figure 1. (a) The flight track on March 14, 2019. (b) The corresponding flight altitude on March 14, 2019.
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We also collected XCO2 products of OCO-2 with a spatial resolution of 1.29 × 2.25 km to explore the land-
sea gradients of CO2 (Lu et al., 2015), OCO-2 data could be acquired from the MIRADOR platform at http://
mirador.gsfc.nasa.gov. However, as XCO2 products of OCO-2 suffers is too sparse in the selected study area 
on March 14, 2019. We have to utilize XCO2 products from OCO-2 on March 16, 2019 in this section. Fig-
ure 2b demonstrates that the mean XCO2 over ocean are about 2.0 ppm lower than those over the coastal 
land, also indicating a plausible CO2 uptake in the ocean (see S2).

3.2.2. Vertical Gradient of XCO2

The vertical gradient of CO2 is harder to obtain when compared to that of horizontal gradient. Vertical pro-
files of CO2 concentration not only help us gain insight into the carbon cycle process but also provide critical 
information for improvements on performances of passive remotes sensing of XCO2 (Eldering et al., 2017). 
At present, an airborne/spaceborne IPDA LIDAR is still incapable of obtaining the range-resolved CO2 
mixing ratio with adequate precision. However, an XCO2 gradient between the ABL and FT can be obtained 
under certain conditions. Moreover, such an XCO2 gradient is a direct index to describe the CO2 exchange 
between lower and upper atmospheres, thus laying the foundation for estimating underlying CO2 fluxes. 
Cloud-reflected signals can be used to obtain above-cloud XCO2 (Mao et al., 2018; Ramanathan et al., 2015). 
In addition, a critical foundation for obtaining XCO2 gradient around ABL is to prove that the clouds we 
used as the reflector occurred at the top of ABL (Ramanathan et al., 2015). The method to determine the 
ABL could be found in S3.

Then, we could retrieve XCO2(FT) (XCO2 above clouds) by the signals reflected by clouds. Signals obtained 
over the ocean are evidently weaker than those obtained over lands because of the lower reflectance of the 
ocean. Under such a circumstance, any cloud-attenuated beams yielded very a low SNR of received signals, 
it's difficult to directly retrieve XCO2(ABL) (XCO2 below clouds) by these signals. Hence, we utilized another 
method to retrieve XCO2(ABL), as is shown in Figure 3. There are three bases for further determination of 
XCO2(ABL). Firstly, the integrated path was divided into FT and ABL. Secondly, XCO2 kept constant in adja-
cent positions (100 measurements, or 3.33 s). Thirdly, XCO2(FT) can be retrieved using signals reflected by 
clouds. Then, we can calculate XCO2(ABL) using Equation 3.

 


2
t FT

ABL
ABL

DAOD DAODXCO
IWF (3)

DAODt is the total differential absorption optical depth of CO2 between the airplane and the sea surface, 
DAODFT is the differential absorption optical depth of CO2 between clouds and flight height (Shi et al., 2020), 
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Figure 2. (a) The CO2 concentration trend measured by the airborne IPDA system during the flight on March 14, 2019. (b) XCO2 products of OCO-2 on March 
16, 2019.
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IWFABL is the integrated weighting function in ABLH. The mean value of XCO2 during the paths that adja-
cent to the clouds is 411.1 ppm, the mean value of XCO2(FT) is 414.9 ppm, we then calculated XCO2(ABL) as 
408.5 ppm. The gradient between XCO2(ABL) and XCO2(FT) is determined as −6.5 ppm (XCO2(ABL) − XCO2(FT)). 
The accuracy evaluation of XCO2 retrieved by IPDA would be found in S4.

4. Discussion
After obtaining the vertical gradient of CO2, we can further estimate the CO2 flux of the ocean using the 
theory of equilibrium convective boundary layer. Then, we compare its outcomes with results calculated by 
the principle of the partial pressure of CO2.

4.1. Sea-Air CO2 Flux Calculation Using the Concept of Equilibrium Atmospheric Boundary 
Layer

The theory of equilibrium ABL was applied in forests and oceans in previous works (Dang et al., 2011; 
Gibert et al., 2007), the exchange rate of CO2 would be calculated using Equation 4, the detailed process of 
this method as shown in S5.

  c FTF W C C (4)

Fc is the net surface flux of CO2, C represents the well-mixed CO2 mixing ratio in the ABL, CFT is the CO2 
mixing ratio in the FT,   is air density in ABL, W is the vertical velocity at the top of ABL (Betts et al., 2004; 
Dang et al., 2011). In this study, W was acquired by WRF with a resolution of 1 × 1 km based on the original 
meteorological data from ERA5 database (Kalnay et al., 1996).

Hence, the results of section 3.2 would be used to calculate the CO2 exchange rate over oceans according to 
S3. We yielded air-sea CO2 flux as −1.5 mmol/m2/h, suggesting a net CO2 uptake over the ocean. The magni-
tude of this result is consistent with the CO2 carbon fluxes in coastal zones acquired by eddy covariance ob-
servation in previous studies (Chien et al., 2018; Gutiérrez-Loza & Ocampo-Torres, 2016; Kahl et al., 2017), 
see Table S1. The intensity of carbon flux exchange caused by seawater at the coastal zone is much greater 
than that of open sea areas (Nellemann et al., 2009; Tokoro et al., 2014).
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Figure 3. (a) The framework to show how to retrieve the XCO2(ABL) and XCO2(FT) through the scatter signal of clouds and sea surface on March 14, 2019. (b) A 
case that XCO2(FT) and XCO2(TOT) around a cloud. (c) A case that clouds exit during the detected path on March 14, 2019.
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Two uncertainties contribute to the calculation of ocean fluxes, originating from the measurement un-
certainties of XCO2(ABL) (εa) and XCO2(FT) (εb). The total uncertainty of CO2 flux estimation (ε) would be 
calculated as:

 
 




  


2 2

100a b

FTC C
 (5)

The uncertainty of εa is 0.62 ppm, the uncertainty of εb is 0.47 ppm, and the total uncertainty of CO2 flux is 
about 11.7%.

4.2. Estimation of CO2 Flux Based on the Partial Pressure of CO2

Another widely used method to estimate sea-air CO2 flux is based on the theory of partial pressure of CO2 
(Tao et al., 2012; Wanninkhof, 2014), the parameters and method description as shown in S6 and Table S2.

Parameters and results of net sea-air CO2 flux calculated by this method are shown in Figure 4. Figure 4 
demonstrates most of the Bohai Bay are sinks for CO2. The exchange rate of CO2 from the atmosphere 
into the ocean varies from 0.1 to 0.5 mmol/m2/h. The estimated net air-sea exchange rate by this method 
is −0.32 mmol/m2/h (see S7) (Nehrkorn et al., 2010), almost four times lower than the result calculated 
in section 4.1. The coastal air-sea CO2 flux in coastal zone undergoes sharp changes during daytime (Kahl 
et  al.,  2017). Many studies have found that the carbon flux of CO2 near the coast is much greater than 
that calculated by the principle of CO2 partial pressure (Gutiérrez-Loza & Ocampo-Torres, 2016; Tokoro 
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Figure 4. Information of parameters related with sea-air CO2 flux, including (a) SST; (b) Chlorophyll a; (c) salinity; (d) pCO2w; (e) p(CO2)a; (f) ∆ pCO2; (g) K; 
(h) L; (i) F.
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et al., 2014). We expect that the future space-borne CO2-IPDA satellite would a large number of observations 
to explore the causes of this phenomenon.

5. Conclusion
In this study, evidence indicating a strong CO2 uptake in the Bohai Bay was demonstrated. It is witnessed 
that the horizontal gradient of XCO2 between the ocean and the coastal land is more than 15 ppm and the 
vertical gradient of XCO2 between ABL and FT is about 6.5 ppm. Both results strongly suggest an evident 
CO2 sink in the ocean during the experiment period. Moreover, the exchange rate of CO2 between ocean and 
atmosphere has been determined quantitatively using the theory of equilibrium convective boundary layer 
as −1.5 ± 0.18 mmol/m2/h. The result of CO2 flux calculated by CO2 partial pressure principle also indicated 
studied region was carbon sink during the discussed time. This work confirms that it is feasible to quantita-
tively estimate CO2 fluxes over oceans using an IPDA-LIDAR. Given that the space-borne CO2-IPDA LIDAR 
is expected to be launched at the end of 2021, it would provide us another means to estimate CO2 fluxes over 
oceans globally, helping solve the mystery of the missing carbon.
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